Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Knaster–Tarski theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Computing a Tarski fixed-point == Chang, Lyuu and Ti<ref>{{Cite journal |last1=Chang |first1=Ching-Lueh |last2=Lyuu |first2=Yuh-Dauh |last3=Ti |first3=Yen-Wu |date=2008-07-23 |title=The complexity of Tarski's fixed point theorem |url=https://www.sciencedirect.com/science/article/pii/S0304397508003812 |journal=Theoretical Computer Science |volume=401 |issue=1 |pages=228–235 |doi=10.1016/j.tcs.2008.05.005 |issn=0304-3975}}</ref> present an algorithm for finding a Tarski fixed-point in a [[Total order|totally-ordered]] lattice, when the order-preserving function is given by a [[value oracle]]. Their algorithm requires <math>O(\log L)</math> queries, where ''L'' is the number of elements in the lattice. In contrast, for a general lattice (given as an oracle), they prove a lower bound of <math>\Omega(L)</math> queries. Deng, Qi and Ye<ref name=":0" /> present several algorithms for finding a Tarski fixed-point. They consider two kinds of lattices: componentwise ordering and [[lexicographic ordering]]. They consider two kinds of input for the function ''f'': [[value oracle]], or a polynomial function. Their algorithms have the following runtime complexity (where ''d'' is the number of dimensions, and ''N<sub>i</sub>'' is the number of elements in dimension ''i''): {| class="wikitable" !{{ diagonal split header|Lattice|Input }} !Polynomial function !Value oracle |- |Componentwise |<math>O(\operatorname{poly}(\log L)\cdot \log N_1 \cdots \log N_d) </math> |<math>O(\log N_1 \cdots \log N_d) \approx O(\log^d L)</math> |- |Lexicographic |<math>O(\operatorname{poly}(\log L)\cdot \log L) </math> |<math>O(\log L)</math> |} The algorithms are based on [[binary search]]. On the other hand, determining whether a given fixed point is ''unique'' is computationally hard: {| class="wikitable" !{{ diagonal split header|Lattice|Input }} !Polynomial function !Value oracle |- |Componentwise |[[coNP-complete]] |<math>\Theta(N_1+\cdots+N_d)</math> |- |Lexicographic |[[coNP-complete]] |<math>\Theta(L)</math> |} For ''d''=2, for componentwise lattice and a value-oracle, the complexity of <math>O(\log^2 L)</math> is optimal.<ref>{{Cite journal |last1=Etessami |first1=Kousha |last2=Papadimitriou |first2=Christos |last3=Rubinstein |first3=Aviad |last4=Yannakakis |first4=Mihalis |date=2020 |editor-last=Vidick |editor-first=Thomas |title=Tarski's Theorem, Supermodular Games, and the Complexity of Equilibria |url=https://drops.dagstuhl.de/opus/volltexte/2020/11703 |journal=11th Innovations in Theoretical Computer Science Conference (ITCS 2020) |series=Leibniz International Proceedings in Informatics (LIPIcs) |location=Dagstuhl, Germany |publisher=Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik |volume=151 |pages=18:1–18:19 |doi=10.4230/LIPIcs.ITCS.2020.18 |doi-access=free |isbn=978-3-95977-134-4|s2cid=202538977 }}</ref> But for ''d''>2, there are faster algorithms: * Fearnley, Palvolgyi and Savani<ref>{{Cite journal |last1=Fearnley |first1=John |last2=Pálvölgyi |first2=Dömötör |last3=Savani |first3=Rahul |date=2022-10-11 |title=A Faster Algorithm for Finding Tarski Fixed Points |url=https://doi.org/10.1145/3524044 |journal=ACM Transactions on Algorithms |volume=18 |issue=3 |pages=23:1–23:23 |doi=10.1145/3524044 |arxiv=2010.02618 |s2cid=222141645 |issn=1549-6325}}</ref> presented an algorithm using only <math>O(\log^{2\lceil d/3 \rceil} L)</math> queries. In particular, for ''d''=3, only <math>O(\log^2 L)</math> queries are needed. * Chen and Li<ref>{{Cite book |last1=Chen |first1=Xi |last2=Li |first2=Yuhao |title=Proceedings of the 23rd ACM Conference on Economics and Computation |chapter=Improved Upper Bounds for Finding Tarski Fixed Points |date=2022-07-13 |chapter-url=https://dl.acm.org/doi/10.1145/3490486.3538297 |series=EC '22 |location=New York, NY, USA |publisher=Association for Computing Machinery |pages=1108–1118 |doi=10.1145/3490486.3538297 |arxiv=2202.05913 |isbn=978-1-4503-9150-4|s2cid=246823965 }}</ref> presented an algorithm using only <math>O(\log^{\lceil (d+1)/2 \rceil} L)</math> queries.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Knaster–Tarski theorem
(section)
Add topic