Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Kernel (algebra)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Ring homomorphisms === {{Ring theory sidebar}} Let ''R'' and ''S'' be [[ring (mathematics)|ring]]s (assumed [[unital algebra|unital]]) and let ''f'' be a [[ring homomorphism]] from ''R'' to ''S''. If 0<sub>''S''</sub> is the [[zero element]] of ''S'', then the ''kernel'' of ''f'' is its kernel as additive groups.<ref name=":1" /> It is the preimage of the [[zero ideal]] {{mset|0<sub>''S''</sub>}}, which is, the subset of ''R'' consisting of all those elements of ''R'' that are mapped by ''f'' to the element 0<sub>''S''</sub>. The kernel is usually denoted {{nowrap|ker ''f''}} (or a variation). In symbols: : <math> \operatorname{ker} f = \{r \in R : f(r) = 0_{S}\} .</math> Since a ring homomorphism preserves zero elements, the zero element 0<sub>''R''</sub> of ''R'' must belong to the kernel. The homomorphism ''f'' is injective if and only if its kernel is only the singleton set {{mset|0<sub>''R''</sub>}}. This is always the case if ''R'' is a [[field (mathematics)|field]], and ''S'' is not the [[zero ring]]. Since ker ''f'' contains the multiplicative identity only when ''S'' is the zero ring, it turns out that the kernel is generally not a [[subring]] of ''R.'' The kernel is a sub[[rng (algebra)|rng]], and, more precisely, a two-sided [[ideal (ring theory)|ideal]] of ''R''. Thus, it makes sense to speak of the [[quotient ring]] {{nowrap|''R'' / (ker ''f'')}}. The first isomorphism theorem for rings states that this quotient ring is naturally isomorphic to the image of ''f'' (which is a subring of ''S''). (Note that rings need not be unital for the kernel definition).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Kernel (algebra)
(section)
Add topic