Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Jules Richard (mathematician)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Reactions to Richard's paradox == [[Georg Cantor]] wrote in a letter to [[David Hilbert]]: *"Infinite definitions" (i.e., definitions which cannot be done in finite time) are absurdities. If Königs statement was "correct", according to which all "finitely definable" real numbers form a collection of [[cardinal number]] <math>\aleph_0</math>, this would imply the countability of the whole continuum; but this is obviously wrong. The question is now what error the alleged proof of his wrong theorem is based upon. The error (which also appears in the note of a Mr. Richard in the last issue of the Acta mathematic, which Mr. Poincaré emphasizes in the last issue of the Revue de Métaphysique et de Morale) is, in my opinion, the following: It is assumed that the system {''B''} of notions ''B'', which have to be used for the definition of individual numbers, is at most countably infinite. This assumption "must be in error" because otherwise we would have the wrong theorem: "the continuum of numbers has cardinality <math>\aleph_0</math>". Here Cantor is in error. Today we know that there are uncountably many real numbers without the possibility of a finite definition. [[Ernst Zermelo]] comments Richard's argument: * The notion "finitely definable" is not an absolute one but a relative one being always related to the "language" chosen. The conclusion according to which all finitely definable objects are countable is only valid in case that one and the same system of symbols is used; the question whether a single individual can be subject to a finite definition is void because to every thing an arbitrary name can be attached to. Zermelo points to the reason why Richard's paradox fails. His last statement, however, is impossible to satisfy. A real number with infinitely many digits, which are not determined by some "rule", has an infinitely large contents of information. Such a number could only be identified by a short name if there were only one or few of them existing. If there exist uncountably many, as is the case, an identification is impossible.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Jules Richard (mathematician)
(section)
Add topic