Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Isoelectric point
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Ceramic materials == The isoelectric points (IEP) of metal oxide ceramics are used extensively in material science in various aqueous processing steps (synthesis, modification, etc.). In the absence of chemisorbed or physisorbed species particle surfaces in aqueous suspension are generally assumed to be covered with surface hydroxyl species, M-OH (where M is a metal such as Al, Si, etc.).<ref name="ref2pineapple"> {{cite journal | last1=Hanaor | first1=D.A.H. | last2=Michelazzi | first2=M. | last3=Leonelli | first3=C. | last4=Sorrell | first4=C.C. | title= The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO<sub>2</sub> | journal= Journal of the European Ceramic Society | year=2012 | volume=32 | issue=1 | pages=235β244 | doi=10.1016/j.jeurceramsoc.2011.08.015| arxiv=1303.2754 | s2cid=98812224 }}</ref> At pH values above the IEP, the predominant surface species is M-O<sup>β</sup>, while at pH values below the IEP, M-OH<sub>2</sub><sup>+</sup> species predominate. Some approximate values of common ceramics are listed below:<ref>{{cite journal | last1 = Haruta | first1 = M | year = 2004 | title = Nanoparticulate Gold Catalysts for Low-Temperature CO Oxidation | journal = Journal of New Materials for Electrochemical Systems | volume = 7 | pages = 163β172 }}</ref><ref>[http://www.iupac.org/publications/pac/1978/pdf/5009x1211.pdf Brunelle JP (1978). 'Preparation of Catalysts by Metallic Complex Adsorption on Mineral Oxides'. ''Pure and Applied Chemistry'' vol. 50, pp. 1211β1229.]</ref> {| class="wikitable sortable" |- ! Material ! IEP |- | [[tungsten(VI) oxide|WO<sub>3</sub>]]<ref name="Kosmulski"/> | 0.2β0.5 |- | [[antimony(V) oxide|Sb<sub>2</sub>O<sub>5</sub>]]<ref name="Kosmulski"/> | <0.4β1.9 |- | [[vanadium(V) oxide|V<sub>2</sub>O<sub>5</sub>]]<ref name="Kosmulski"/><ref name="Jolivet"/> | 1β2 (3) |- | [[manganese(IV) oxide|Ξ΄-MnO<sub>2</sub>]] | 1.5 |- | [[silicon dioxide|SiO<sub>2</sub>]]<ref name="Kosmulski"/> | 1.7β3.5 |- | [[silicon carbide|SiC]]<ref>U.S. Patent 5,165,996</ref> | 2β3.5 |- | [[tantalum(V) oxide|Ta<sub>2</sub>O<sub>5</sub>]]<ref name="Kosmulski"/> | 2.7β3.0 |- | [[titanium(IV) oxide|TiO<sub>2</sub>]]<ref name=epd>[https://arxiv.org/ftp/arxiv/papers/1303/1303.2742.pdf Anodic Aqueous Electrophoretic Deposition of Titanium Dioxide Using Carboxylic Acids as Dispersing Agents] Journal of the European Ceramic Society, 31(6), 1041-1047, 2011</ref> | 2.8β3.8 |- | Ξ³-[[Iron (III) oxide|Fe<sub>2</sub>O<sub>3</sub>]]<ref name="Kosmulski"/> | 3.3β6.7 |- | [[tin(IV) oxide|SnO<sub>2</sub>]]<ref name="Lewis">{{cite journal | last1 = Lewis | first1 = JA | year = 2000 | title = Colloidal Processing of Ceramics | doi = 10.1111/j.1151-2916.2000.tb01560.x | journal = Journal of the American Ceramic Society | volume = 83 | issue = 10| pages = 2341β2359 | citeseerx = 10.1.1.514.1543 | s2cid = 9513223 }}</ref> | 4β5.5 (7.3) |- | [[zirconium(IV) oxide|ZrO<sub>2</sub>]]<ref name="Kosmulski"/> | 4β11 |- | [[indium tin oxide|ITO]]<ref>{{cite journal | last1 = Daido | first1 = T | last2 = Akaike | first2 = T | year = 1993 | title = Electrochemistry of cytochrome c: influence of coulombic attraction with indium tin oxide electrode | journal = Journal of Electroanalytical Chemistry | volume = 344 | issue = 1β2| pages = 91β106 | doi=10.1016/0022-0728(93)80048-m}}</ref> | 6 |- | [[chromium(III) oxide|Cr<sub>2</sub>O<sub>3</sub>]]<ref name="Kosmulski"/><ref name="Jolivet"/> | 6.2β8.1 (7) |- | [[magnetite|Fe<sub>3</sub>O<sub>4</sub>]]<ref name="Kosmulski"/> | 6.5β6.8 |- | [[cerium(IV) oxide|CeO<sub>2</sub>]]<ref name="Kosmulski"/> | 6.7β8.6 |- | [[yttrium(III) oxide|Y<sub>2</sub>O<sub>3</sub>]]<ref name="Kosmulski"/> | 7.15β8.95 |- | Ξ³-[[aluminium oxide|Al<sub>2</sub>O<sub>3</sub>]] | 7β8 |- | Ξ²-MnO<sub>2</sub><ref name="Jolivet"/> | 7.3 |- | [[thallium(I) oxide|Tl<sub>2</sub>O]]<ref>{{cite journal | last1 = Kosmulski | first1 = M | last2 = Saneluta | first2 = C | year = 2004 | title = Point of zero charge/isoelectric point of exotic oxides: Tl2O3 | journal = Journal of Colloid and Interface Science | volume = 280 | issue = 2| pages = 544β545 | doi=10.1016/j.jcis.2004.08.079| pmid = 15533430 | bibcode = 2004JCIS..280..544K }}</ref> | 8 |- | Ξ±-[[aluminium oxide|Al<sub>2</sub>O<sub>3</sub>]] | 8β9 |- | Ξ±-Fe<sub>2</sub>O<sub>3</sub><ref name="Kosmulski"/> | 8.4β8.5 |- | [[zinc oxide|ZnO]]<ref name="Kosmulski"/> | 8.7β10.3 |- | [[silicon nitride|Si<sub>3</sub>N<sub>4</sub>]]<ref name="Lewis"/> | 9 |- | [[copper(II) oxide|CuO]]<ref name="Lewis"/> | 9.5 |- | [[lanthanum(III) oxide|La<sub>2</sub>O<sub>3</sub>]] | 10 |- | [[nickel(II) oxide|NiO]]<ref name="Lewis"/> | 10β11 |- | [[lead(II) oxide|PbO]]<ref name="Kosmulski">Marek Kosmulski, "Chemical Properties of Material Surfaces", Marcel Dekker, 2001.</ref> | 10.7β11.6 |- | [[magnesium oxide|MgO]]<ref name="Kosmulski"/> | 12β13 (9.8Β·12.7) |- |} ''Note: The following list gives the isoelectric point at 25 Β°C for selected materials in water. The exact value can vary widely, depending on material factors such as purity and phase as well as physical parameters such as temperature. Moreover, the precise measurement of isoelectric points can be difficult, thus many sources often cite differing values for isoelectric points of these materials.'' Mixed oxides may exhibit isoelectric point values that are intermediate to those of the corresponding pure oxides. For example, a synthetically prepared amorphous [[aluminosilicate]] (Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>) was initially measured as having IEP of 4.5 (the electrokinetic behavior of the surface was dominated by surface Si-OH species, thus explaining the relatively low IEP value).<ref>{{cite journal | last1 = Jara | first1 = A.A. | last2 = Goldberg | first2 = S. | last3 = Mora | first3 = M.L. | year = 2005 | title = Studies of the surface charge of amorphous aluminosilicates using surface complexation models | journal = Journal of Colloid and Interface Science | volume = 292 | issue = 1| pages = 160β170 | doi=10.1016/j.jcis.2005.05.083| pmid = 16051258 | bibcode = 2005JCIS..292..160J | hdl = 10533/176403 | hdl-access = free }}</ref> Significantly higher IEP values (pH 6 to 8) have been reported for 3Al<sub>2</sub>O<sub>3</sub>-2SiO<sub>2</sub> by others.<ref name="Lewis"/> Similarly, also IEP of [[barium titanate]], BaTiO<sub>3</sub> was reported in the range 5β6<ref name="Lewis"/> while others got a value of 3.<ref name="VamvakakiBillingham2001">{{cite journal|last1=Vamvakaki|first1=Maria|last2=Billingham|first2=Norman C.|last3=Armes|first3=Steven P.|last4=Watts|first4=John F.|last5=Greaves|first5=Stephen J.|title=Controlled structure copolymers for the dispersion of high-performance ceramics in aqueous media|journal=Journal of Materials Chemistry|volume=11|issue=10|year=2001|pages=2437β2444|issn=0959-9428|doi=10.1039/b101728o}}</ref> Mixtures of [[Titanium dioxide|titania]] (TiO<sub>2</sub>) and [[zirconia]] (ZrO<sub>2</sub>) were studied and found to have an isoelectric point between 5.3β6.9, varying non-linearly with %(ZrO<sub>2</sub>).<ref name="GlennaLDrisko2009">{{cite journal|last1=Drisko|first1=Glenna L|last2=Luca|first2=Vittorio|last3=Sizgek|first3=Erden|last4=Scales|first4=Nicolas F.|last5=Caruso|first5=Rachel A.|title=Template Synthesis and Adsorption Properties of Hierarchically Porous Zirconium Titanium Oxides|journal=Langmuir|volume=25|issue=9|year=2009|pages=5286β5293|issn=0743-7463|doi=10.1021/la804030h|pmid=19397363}}</ref> The surface charge of the mixed oxides was correlated with acidity. Greater titania content led to increased Lewis acidity, whereas zirconia-rich oxides displayed Br::onsted acidity. The different types of acidities produced differences in ion adsorption rates and capacities.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Isoelectric point
(section)
Add topic