Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Interquartile mean
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Dataset size not divisible by four=== The above example consisted of 12 observations in the dataset, which made the determination of the quartiles very easy. Of course, not all datasets have a number of observations that is divisible by 4. We can adjust the method of calculating the IQM to accommodate this. So ideally we want to have the IQM equal to the [[mean]] for symmetric distributions, e.g.: :1, 2, 3, 4, 5 has a mean value ''x''<sub>mean</sub> = 3, and since it is a symmetric distribution, ''x''<sub>IQM</sub> = 3 would be desired. We can solve this by using a [[weighted average]] of the quartiles and the interquartile dataset: Consider the following dataset of 9 observations: :1, 3, 5, 7, 9, 11, 13, 15, 17 There are 9/4 = 2.25 observations in each quartile, and 4.5 observations in the interquartile range. Truncate the fractional quartile size, and remove this number from the 1st and 4th quartiles (2.25 observations in each quartile, thus the lowest 2 and the highest 2 are removed). :<s>1, 3</s>, (5), 7, 9, 11, (13), <s>15, 17</s> Thus, there are 3 ''full'' observations in the interquartile range with a weight of 1 for each full observation, and 2 fractional observations with each observation having a weight of 0.75 (1-0.25 = 0.75). Thus we have a total of 4.5 observations in the interquartile range, (3Γ1 + 2Γ0.75 = 4.5 observations). The IQM is now calculated as follows: :''x''<sub>IQM</sub> = {(7 + 9 + 11) + 0.75 × (5 + 13)} / 4.5 = 9 In the above example, the mean has a value x<sub>mean</sub> = 9. The same as the IQM, as was expected. The method of calculating the IQM for any number of observations is analogous; the fractional contributions to the IQM can be either 0, 0.25, 0.50, or 0.75.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Interquartile mean
(section)
Add topic