Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Infimum and supremum
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Minimal upper bounds === Finally, a partially ordered set may have many minimal upper bounds without having a least upper bound. Minimal upper bounds are those upper bounds for which there is no strictly smaller element that also is an upper bound. This does not say that each minimal upper bound is smaller than all other upper bounds, it merely is not greater. The distinction between "minimal" and "least" is only possible when the given order is not a [[Totally ordered set|total]] one. In a totally ordered set, like the real numbers, the concepts are the same. As an example, let <math>S</math> be the set of all finite subsets of natural numbers and consider the partially ordered set obtained by taking all sets from <math>S</math> together with the set of [[integer]]s <math>\Z</math> and the set of positive real numbers <math>\R^+,</math> ordered by subset inclusion as above. Then clearly both <math>\Z</math> and <math>\R^+</math> are greater than all finite sets of natural numbers. Yet, neither is <math>\R^+</math> smaller than <math>\Z</math> nor is the converse true: both sets are minimal upper bounds but none is a supremum.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Infimum and supremum
(section)
Add topic