Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Hypercube
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Faces == Every hypercube admits, as its faces, hypercubes of a lower dimension contained in its boundary. A hypercube of dimension <math>n</math> admits <math>2n</math> facets, or faces of dimension <math>n-1</math>: a (<math>1</math>-dimensional) line segment has <math>2</math> endpoints; a (<math>2</math>-dimensional) square has <math>4</math> sides or edges; a <math>3</math>-dimensional cube has <math>6</math> square faces; a (<math>4</math>-dimensional) tesseract has <math>8</math> three-dimensional cubes as its facets. The number of vertices of a hypercube of dimension <math>n</math> is <math>2^n</math> (a usual, <math>3</math>-dimensional cube has <math>2^3=8</math> vertices, for instance).<ref>{{Cite journal |author1=Miroslav Vořechovský |author2=Jan Mašek |author3=Jan Eliáš |title=Distance-based optimal sampling in a hypercube: Analogies to N-body systems |journal=Advances in Engineering Software |volume=137 |date=November 2019 |at=102709 |issn=0965-9978 |doi=10.1016/j.advengsoft.2019.102709}}</ref> The number of the <math>m</math>-dimensional hypercubes (just referred to as <math>m</math>-cubes from here on) contained in the boundary of an <math>n</math>-cube is :<math> E_{m,n} = 2^{n-m}{n \choose m} </math>,{{sfn|Coxeter|1973|p=122|loc=§7·25}} where <math>{n \choose m}=\frac{n!}{m!\,(n-m)!}</math> and <math>n!</math> denotes the [[factorial]] of <math>n</math>. For example, the boundary of a <math>4</math>-cube (<math>n=4</math>) contains <math>8</math> cubes (<math>3</math>-cubes), <math>24</math> squares (<math>2</math>-cubes), <math>32</math> line segments (<math>1</math>-cubes) and <math>16</math> vertices (<math>0</math>-cubes). This identity can be proven by a simple combinatorial argument: for each of the <math>2^n</math> vertices of the hypercube, there are <math>\tbinom n m</math> ways to choose a collection of <math>m</math> edges incident to that vertex. Each of these collections defines one of the <math>m</math>-dimensional faces incident to the considered vertex. Doing this for all the vertices of the hypercube, each of the <math>m</math>-dimensional faces of the hypercube is counted <math>2^m</math> times since it has that many vertices, and we need to divide <math>2^n\tbinom n m</math> by this number. The number of facets of the hypercube can be used to compute the <math>(n-1)</math>-dimensional volume of its boundary: that volume is <math>2n</math> times the volume of a <math>(n-1)</math>-dimensional hypercube; that is, <math>2ns^{n-1}</math> where <math>s</math> is the length of the edges of the hypercube. These numbers can also be generated by the linear [[recurrence relation]]. :<math>E_{m,n} = 2E_{m,n-1} + E_{m-1,n-1} \!</math>, with <math>E_{0,0}= 1</math>, and <math>E_{m,n}=0</math> when <math>n < m</math>, <math>n < 0</math>, or <math>m < 0</math>. For example, extending a square via its 4 vertices adds one extra line segment (edge) per vertex. Adding the opposite square to form a cube provides <math>E_{1,3}=12</math> line segments. The extended [[f-vector]] for an ''n''-cube can also be computed by expanding <math>(2x+1)^n</math> (concisely, (2,1)<sup>''n''</sup>), and reading off the coefficients of the resulting [[Polynomial#Multiplication|polynomial]]. For example, the elements of a tesseract is (2,1)<sup>4</sup> = (4,4,1)<sup>2</sup> = (16,32,24,8,1). {| class="wikitable" |+ Number <math>E_{m,n}</math> of <math>m</math>-dimensional faces of a <math>n</math>-dimensional hypercube {{OEIS|A038207}} |- ! || || || m|| 0|| 1|| 2|| 3|| 4|| 5|| 6|| 7|| 8|| 9|| 10 |- ! [[polytope|''n'']] ! ''n''-cube ! Names ![[Schläfli symbol|Schläfli]]<br>[[Coxeter–Dynkin diagram|Coxeter]]<br> ![[Vertex (geometry)|Vertex]]<br>0-face<br>|| [[Edge (geometry)|Edge]]<br>1-face<br>|| [[Face (geometry)|Face]]<br>2-face<br>|| [[Cell (geometry)|Cell]]<br>3-face<br>|| <br>4-face<br>||<br> 5-face<br>|| <br>6-face<br>|| <br>7-face<br>||<br> 8-face<br>|| <br>9-face<br>||<br>10-face<br> |- ! [[0-polytope|0]] ! 0-cube | Point<br>'''Monon'''<br> | ( )<br>{{CDD|node}}<br> | 1|| ||rowspan=2| ||rowspan=3| ||rowspan=4| ||rowspan=5| ||rowspan=6| ||rowspan=7| ||rowspan=8| ||rowspan=9| ||rowspan=10| |- ! [[1-polytope|1]] ! 1-cube | [[Line segment]]<br>'''Dion'''<ref>Johnson, Norman W.; ''Geometries and Transformations'', Cambridge University Press, 2018, p.224.</ref><br> |{}<br>{{CDD|node_1}}<br> | 2|| 1 |- ! [[2-polytope|2]] ! 2-cube | [[Square (geometry)|Square]]<br>'''Tetragon'''<br> |{4}<br>{{CDD|node_1|4|node}}<br> | 4|| 4|| 1 |- ! [[3-polytope|3]] ! 3-cube | [[Cube]]<br>'''Hexahedron'''<br> |{4,3}<br>{{CDD|node_1|4|node|3|node}}<br> | 8|| 12|| 6|| 1 |- ! [[4-polytope|4]] ! 4-cube | [[Tesseract]]<br>'''Octachoron'''<br> |{4,3,3}<br>{{CDD|node_1|4|node|3|node|3|node}}<br> | 16|| 32|| 24|| 8|| 1 |- ! [[5-polytope|5]] ! [[5-cube]] | Penteract<br>'''Deca-5-tope'''<br> |{4,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node}}<br> | 32|| 80|| 80|| 40|| 10|| 1 |- ! [[6-polytope|6]] ! [[6-cube]] | Hexeract<br>'''Dodeca-6-tope'''<br> |{4,3,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node|3|node}}<br> | 64|| 192|| 240|| 160|| 60|| 12|| 1 |- ! [[7-polytope|7]] ! [[7-cube]] | Hepteract<br>'''Tetradeca-7-tope'''<br> |{4,3,3,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node}}<br> | 128|| 448|| 672|| 560|| 280|| 84|| 14|| 1 |- ! [[8-polytope|8]] ! [[8-cube]] | Octeract<br>'''Hexadeca-8-tope'''<br> |{4,3,3,3,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}<br> | 256|| 1024|| 1792|| 1792|| 1120|| 448|| 112|| 16|| 1 |- ! [[9-polytope|9]] ! [[9-cube]] | Enneract<br>'''Octadeca-9-tope'''<br> |{4,3,3,3,3,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}<br> | 512|| 2304|| 4608|| 5376|| 4032|| 2016|| 672|| 144|| 18|| 1 |- ! [[10-polytope|10]] ! [[10-cube]] | Dekeract<br>'''Icosa-10-tope'''<br> |{4,3,3,3,3,3,3,3,3}<br>{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}<br> |1024||5120||11520||15360||13440||8064||3360||960||180||20||1 |} === Graphs === An '''''n''-cube''' can be projected inside a regular 2''n''-gonal polygon by a [[Petrie polygon#The hypercube and orthoplex families|skew orthogonal projection]], shown here from the line segment to the 16-cube. {| class="wikitable skin-invert-image" |+ [[Petrie polygon]] [[Orthographic projection]]s |- align=center valign=bottom |[[File:1-simplex t0.svg|160px]]<br />[[Line segment]] |[[File:2-cube.svg|160px]]<br />[[Square (geometry)|Square]] |[[File:3-cube graph.svg|160px]]<br />[[Cube]] |[[File:4-cube graph.svg|160px]]<br />[[Tesseract]] |- align=center |[[File:5-cube graph.svg|160px]]<br />[[5-cube]] |[[File:6-cube graph.svg|160px]]<br />[[6-cube]] |[[File:7-cube graph.svg|160px]]<br />[[7-cube]] |[[File:8-cube.svg|160px]]<br />[[8-cube]] |- align=center |[[File:9-cube.svg|160px]]<br />[[9-cube]] |[[File:10-cube.svg|160px]]<br />[[10-cube]] |[[File:11-cube.svg|160px]]<br />[[11-cube]] |[[File:12-cube.svg|160px]]<br />[[12-cube]] |- align=center |[[File:13-cube.svg|160px]]<br />[[13-cube]] |[[File:14-cube.svg|160px]]<br />[[14-cube]] |[[File:15-cube.svg|160px]]<br />[[15-cube]] |<!--[[File:16-cube t0 A15.svg|160px]]<br />[[16-cube]] - this is not in the B16 Coxeter plane--> |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Hypercube
(section)
Add topic