Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Holocene
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Climate==<!-- This section is linked from [[8.2ka event]] --> [[File:Journal.pone.0076514.g004.png|thumb|upright=1.4|Vegetation and water bodies in northern and central Africa in the [[Eemian]] (bottom) and Holocene (top)]] The climate throughout the Holocene has shown significant variability despite ice core records from Greenland suggesting a more stable climate following the preceding ice age. Marine chemical fluxes during the Holocene were lower than during the Younger Dryas, but were still considerable enough to imply notable changes in the climate. The temporal and spatial extent of climate change during the Holocene is an area of considerable uncertainty, with [[radiative forcing]] recently proposed to be the origin of cycles identified in the North Atlantic region. Climate cyclicity through the Holocene ([[Bond events]]) has been observed in or near marine settings and is strongly controlled by glacial input to the North Atlantic.<ref name="Bond1997">{{cite journal |author=Bond, G. |display-authors=etal |year=1997 |title=A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates |url=http://rivernet.ncsu.edu/courselocker/PaleoClimate/Bond%20et%20al.,%201997%20Millenial%20Scale%20Holocene%20Change.pdf |url-status=dead |journal=[[Science (journal)|Science]] |volume=278 |issue=5341 |pages=1257–1266 |bibcode=1997Sci...278.1257B |doi=10.1126/science.278.5341.1257 |s2cid=28963043 |archive-url=https://web.archive.org/web/20080227192411/http://rivernet.ncsu.edu/courselocker/PaleoClimate/Bond%20et%20al.%2C%201997%20Millenial%20Scale%20Holocene%20Change.pdf |archive-date=2008-02-27}}</ref><ref>{{cite journal |last=Bond |first=G. |display-authors=etal |year=2001 |title=Persistent Solar Influence on North Atlantic Climate During the Holocene |journal=Science |volume=294 |issue=5549 |pages=2130–2136 |bibcode=2001Sci...294.2130B |doi=10.1126/science.1065680 |pmid=11739949 |s2cid=38179371 |doi-access=free }}</ref> Periodicities of ≈2500, ≈1500, and ≈1000 years are generally observed in the North Atlantic.<ref>{{cite journal |last1=Bianchi |first1=G. G. |last2=McCave |first2=I. N. |year=1999 |title=Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland |journal=[[Nature (journal)|Nature]] |volume=397 |issue=6719 |pages=515–517 |bibcode=1999Natur.397..515B |doi=10.1038/17362 |s2cid=4304638}}</ref><ref>{{cite journal |last1=Viau |first1=A. E. |last2=Gajewski |first2=K. |last3=Sawada |first3=M. C. |last4=Fines |first4=P. |year=2006 |title=Millennial-scale temperature variations in North America during the Holocene |journal=Journal of Geophysical Research |volume=111 |issue=D9 |page=D09102 |bibcode=2006JGRD..111.9102V |doi=10.1029/2005JD006031 |doi-access=free}}</ref><ref>{{cite journal |last1=Debret |first1=M. |last2=Sebag |first2=D. |last3=Crosta |first3=X. |last4=Massei |first4=N. |last5=Petit |first5=J.-R. |last6=Chapron |first6=E. |last7=Bout-Roumazeilles |first7=V. |year=2009 |title=Evidence from wavelet analysis for a mid-Holocene transition in global climate forcing |url=https://hal-insu.archives-ouvertes.fr/insu-00442817/file/Debret-QuaternaryScienceReviews-2009.pdf |url-status=live |journal=Quaternary Science Reviews |volume=28 |issue=25 |pages=2675–2688 |bibcode=2009QSRv...28.2675D |doi=10.1016/j.quascirev.2009.06.005 |s2cid=117917422 |archive-url=https://web.archive.org/web/20181228082822/https://hal-insu.archives-ouvertes.fr/insu-00442817/file/Debret-QuaternaryScienceReviews-2009.pdf |archive-date=2018-12-28 |access-date=2018-12-16}}</ref> At the same time spectral analyses of the continental record, which is remote from oceanic influence, reveal persistent periodicities of 1,000 and 500 years that may correspond to solar activity variations during the Holocene Epoch.<ref name="Krav">{{cite journal |last1=Kravchinsky |first1=V.A. |last2=Langereis |first2=C.G. |last3=Walker |first3=S.D. |last4=Dlusskiy |first4=K.G. |last5=White |first5=D. |year=2013 |title=Discovery of Holocene millennial climate cycles in the Asian continental interior: Has the sun been governing the continental climate?. |journal=Global and Planetary Change |volume=110 |pages=386–396 |bibcode=2013GPC...110..386K |doi=10.1016/j.gloplacha.2013.02.011}}</ref> A 1,500-year cycle corresponding to the North Atlantic oceanic circulation may have had widespread global distribution in the Late Holocene.<ref name="Krav" /> From 8,500 BP to 6,700 BP, North Atlantic climate oscillations were highly irregular and erratic because of perturbations from substantial ice discharge into the ocean from the collapsing Laurentide Ice Sheet.<ref>{{Cite journal |last1=Martin-Puertas |first1=Celia |last2=Hernandez |first2=Armand |last3=Pardo-Igúzquiza |first3=Eulogio |last4=Boyall |first4=Laura |last5=Brierley |first5=Chris |last6=Jiang |first6=Zhiyi |last7=Tjallingii |first7=Rik |last8=Blockley |first8=Simon P. E. |last9=Rodríguez-Tovar |first9=Francisco Javier |date=23 March 2023 |title=Dampened predictable decadal North Atlantic climate fluctuations due to ice melting |url=https://www.nature.com/articles/s41561-023-01145-y |journal=[[Nature Geoscience]] |language=en |volume=16 |issue=4 |pages=357–362 |doi=10.1038/s41561-023-01145-y |bibcode=2023NatGe..16..357M |s2cid=257735721 |issn=1752-0908 |access-date=22 September 2023|hdl=10261/349251 |hdl-access=free }}</ref> The Greenland ice core records indicate that climate changes became more regional and had a larger effect on the mid-to-low latitudes and mid-to-high latitudes after ~5600 B.P.<ref>{{Cite journal |last1=O'Brien |first1=S. R. |last2=Mayewski |first2=P. A. |last3=Meeker |first3=L. D. |last4=Meese |first4=D. A. |last5=Twickler |first5=M. S. |last6=Whitlow |first6=S. I. |date=1995-12-22 |title=Complexity of Holocene Climate as Reconstructed from a Greenland Ice Core |url=https://www.science.org/doi/10.1126/science.270.5244.1962 |journal=[[Science (journal)|Science]] |language=en |volume=270 |issue=5244 |pages=1962–1964 |doi=10.1126/science.270.5244.1962 |bibcode=1995Sci...270.1962O |s2cid=129199142 |issn=0036-8075}}</ref> Human activity through land use changes already by the Mesolithic had major ecological impacts;<ref>{{Cite journal |last1=Nikulina |first1=Anastasia |last2=MacDonald |first2=Katharine |last3=Zapolska |first3=Anhelina |last4=Serge |first4=Maria Antonia |last5=Roche |first5=Didier M. |last6=Mazier |first6=Florence |last7=Davoli |first7=Marco |last8=Svenning |first8=Jens-Christian |last9=van Wees |first9=Dave |last10=Pearce |first10=Elena A. |last11=Fyfe |first11=Ralph |last12=Roebroeks |first12=Wil |last13=Scherjon |first13=Fulco |date=15 January 2024 |title=Hunter-gatherer impact on European interglacial vegetation: A modelling approach |url=https://www.sciencedirect.com/science/article/pii/S0277379123004870 |journal=[[Quaternary Science Reviews]] |language=en |volume=324 |pages=108439 |doi=10.1016/j.quascirev.2023.108439 |bibcode=2024QSRv..32408439N |access-date=11 October 2024 |via=Elsevier Science Direct}}</ref> it was an important influence on Holocene climatic changes, and is believed to be why the Holocene is an atypical interglacial that has not experienced significant cooling over its course.<ref>{{Cite journal |last1=Ruddiman |first1=W. F. |last2=Fuller |first2=D. Q. |last3=Kutzbach |first3=J. E. |last4=Tzedakis |first4=P. C. |last5=Kaplan |first5=J. O. |last6=Ellis |first6=E. C. |last7=Vavrus |first7=S. J. |last8=Roberts |first8=C. N. |last9=Fyfe |first9=R. |last10=He |first10=F. |last11=Lemmen |first11=C. |last12=Woodbridge |first12=J. |date=15 February 2016 |title=Late Holocene climate: Natural or anthropogenic? |journal=[[Reviews of Geophysics]] |language=en |volume=54 |issue=1 |pages=93–118 |doi=10.1002/2015RG000503 |bibcode=2016RvGeo..54...93R |s2cid=46451944 |issn=8755-1209 |doi-access=free |hdl=10026.1/8204 |hdl-access=free }}</ref> From the start of the [[Industrial Revolution]] onwards, large-scale anthropogenic greenhouse gas emissions caused the Earth to warm.<ref name=":0">{{Cite journal |last1=Seip |first1=Knut Lehre |last2=Wang |first2=Hui |date=3 March 2023 |title=Maximum Northern Hemisphere warming rates before and after 1880 during the Common Era |journal=[[Theoretical and Applied Climatology]] |language=en |volume=152 |issue=1–2 |pages=307–319 |doi=10.1007/s00704-023-04398-0 |bibcode=2023ThApC.152..307S |s2cid=257338719 |issn=0177-798X |doi-access=free |hdl=11250/3071271 |hdl-access=free }}</ref> Likewise, climatic changes have induced substantial changes in human civilisation over the course of the Holocene.<ref>{{Cite journal |last1=Degroot |first1=Dagomar |last2=Anchukaitis |first2=Kevin J |last3=Tierney |first3=Jessica E |last4=Riede |first4=Felix |last5=Manica |first5=Andrea |last6=Moesswilde |first6=Emma |last7=Gauthier |first7=Nicolas |date=1 October 2022 |title=The history of climate and society: a review of the influence of climate change on the human past |journal=[[Environmental Research Letters]] |volume=17 |issue=10 |pages=103001 |doi=10.1088/1748-9326/ac8faa |bibcode=2022ERL....17j3001D |s2cid=252130680 |issn=1748-9326 |doi-access=free |hdl=10852/100641 |hdl-access=free }}</ref><ref>{{Cite journal |last1=Zhang |first1=David D. |last2=Brecke |first2=Peter |last3=Lee |first3=Harry F. |last4=He |first4=Yuan-Qing |last5=Zhang |first5=Jane |date=4 December 2007 |title=Global climate change, war, and population decline in recent human history |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |language=en |volume=104 |issue=49 |pages=19214–19219 |doi=10.1073/pnas.0703073104 |issn=0027-8424 |pmc=2148270 |pmid=18048343 |bibcode=2007PNAS..10419214Z |doi-access=free }}</ref> During the transition from the last glacial to the Holocene, the [[Huelmo–Mascardi Cold Reversal]] in the [[Southern Hemisphere]] began before the Younger Dryas, and the maximum warmth flowed south to north from 11,000 to 7,000 years ago. It appears that this was influenced by the residual glacial ice remaining in the [[Northern Hemisphere]] until the later date.{{Citation needed|date=May 2012}} The first major phase of Holocene climate was the [[Preboreal]].<ref name=":1">{{Cite journal |last1=Wanner |first1=Heinz |last2=Beer |first2=Jürg |last3=Bütikofer |first3=Jonathan |last4=Crowley |first4=Thomas J. |last5=Cubasch |first5=Ulrich |last6=Flückiger |first6=Jacqueline |last7=Goosse |first7=Hugues |last8=Grosjean |first8=Martin |last9=Joos |first9=Fortunat |last10=Kaplan |first10=Jed O. |last11=Küttel |first11=Marcel |last12=Müller |first12=Simon A. |last13=Prentice |first13=I. Colin |last14=Solomina |first14=Olga |last15=Stocker |first15=Thomas F. |date=October 2008 |title=Mid- to Late Holocene climate change: an overview |url=https://www.sciencedirect.com/science/article/pii/S0277379108001479 |journal=[[Quaternary Science Reviews]] |volume=27 |issue=19 |pages=1791–1828 |doi=10.1016/j.quascirev.2008.06.013 |bibcode=2008QSRv...27.1791W |issn=0277-3791 |access-date=27 September 2023}}</ref> At the start of the Preboreal occurred the [[Preboreal oscillation|Preboreal Oscillation]] (PBO).<ref>{{Cite journal |last1=Hoek |first1=Wim Z. |last2=Bos |first2=Johanna A. A. |date=August 2007 |title=Early Holocene climate oscillations—causes and consequences |url=https://www.sciencedirect.com/science/article/pii/S0277379107001679 |journal=[[Quaternary Science Reviews]] |series=Early Holocene climate oscillations – causes and consequences |volume=26 |issue=15 |pages=1901–1906 |bibcode=2007QSRv...26.1901H |doi=10.1016/j.quascirev.2007.06.008 |issn=0277-3791 |access-date=27 September 2023}}</ref> The [[Holocene climatic optimum|Holocene Climatic Optimum]] (HCO) was a period of warming throughout the globe but was not globally synchronous and uniform.<ref>{{Cite journal |last1=Gao |first1=Fuyuan |last2=Jia |first2=Jia |last3=Xia |first3=Dunsheng |last4=Lu |first4=Caichen |last5=Lu |first5=Hao |last6=Wang |first6=Youjun |last7=Liu |first7=Hao |last8=Ma |first8=Yapeng |last9=Li |first9=Kaiming |date=15 March 2019 |title=Asynchronous Holocene Climate Optimum across mid-latitude Asia |url=https://linkinghub.elsevier.com/retrieve/pii/S0031018218301688 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=518 |pages=206–214 |doi=10.1016/j.palaeo.2019.01.012 |bibcode=2019PPP...518..206G |s2cid=135199089 |access-date=10 September 2023}}</ref> Following the HCO, the global climate entered a broad trend of very gradual cooling known as [[Neoglaciation]], which lasted from the end of the HCO to before the [[Industrial Revolution]].<ref name=":1" /> From the 10th-14th century, the climate was similar to that of modern times during a period known as the [[Medieval Warm Period|Mediaeval Warm Period]] (MWP), also known as the Mediaeval Climatic Optimum (MCO). It was found that the warming that is taking place in current years is both more frequent and more spatially homogeneous than what was experienced during the MWP. A warming of +1 degree Celsius occurs 5–40 times more frequently in modern years than during the MWP. The major forcing during the MWP was due to greater solar activity, which led to heterogeneity compared to the greenhouse gas forcing of modern years that leads to more homogeneous warming. This was followed by the [[Little Ice Age]] (LIA) from the 13th or 14th century to the mid-19th century.<ref>{{Cite journal |last=Guiot |first=Joël |date=March 2012 |title=A robust spatial reconstruction of April to September temperature in Europe: Comparisons between the medieval period and the recent warming with a focus on extreme values |url=https://www.sciencedirect.com/science/article/abs/pii/S0921818111001196 |journal=[[Global and Planetary Change]] |volume=84–85 |pages=14–22 |bibcode=2012GPC....84...14G |doi=10.1016/j.gloplacha.2011.07.007}}</ref> The LIA was the coldest interval of time of the past two millennia.<ref>{{Cite journal |last1=Wanner |first1=H. |last2=Mercolli |first2=L. |last3=Grosjean |first3=M. |last4=Ritz |first4=S. P. |date=17 October 2014 |title=Holocene climate variability and change; a data-based review |url=https://www.lyellcollection.org/doi/10.1144/jgs2013-101 |journal=[[Journal of the Geological Society]] |language=en |volume=172 |issue=2 |pages=254–263 |doi=10.1144/jgs2013-101 |s2cid=73548216 |issn=0016-7649 |access-date=27 September 2023}}</ref> Following the Industrial Revolution, warm decadal intervals became more common relative to before as a consequence of anthropogenic greenhouse gases, resulting in progressive global warming.<ref name=":0" /> In the late 20th century, anthropogenic forcing superseded variations in solar activity as the dominant driver of climate change,<ref>{{Cite journal |last1=Duan |first1=Jianping |last2=Zhang |first2=Qi-Bin |date=27 October 2014 |title=A 449 year warm season temperature reconstruction in the southeastern Tibetan Plateau and its relation to solar activity: Temperature reconstruction in the Tibet |journal=[[Journal of Geophysical Research: Atmospheres]] |language=en |volume=119 |issue=20 |pages=11,578–11,592 |doi=10.1002/2014JD022422 |s2cid=128906290 |doi-access=free }}</ref> though solar activity has continued to play a role.<ref>{{Cite journal |last1=Benestad |first1=R. E. |last2=Schmidt |first2=G. A. |date=27 July 2009 |title=Solar trends and global warming |journal=[[Journal of Geophysical Research: Atmospheres]] |language=en |volume=114 |issue=D14 |doi=10.1029/2008JD011639 |issn=0148-0227 |doi-access=free |bibcode=2009JGRD..11414101B }}</ref><ref>{{Cite journal |last1=Perry |first1=Charles A. |last2=Hsu |first2=Kenneth J. |date=7 November 2000 |title=Geophysical, archaeological, and historical evidence support a solar-output model for climate change |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |language=en |volume=97 |issue=23 |pages=12433–12438 |doi=10.1073/pnas.230423297 |issn=0027-8424 |pmc=18780 |pmid=11050181 |doi-access=free |bibcode=2000PNAS...9712433P }}</ref> === Europe === [[File:Doggerland3er en.png|thumb|European coastline: modern (left), during the early Holocene (center) and during the [[Last Glacial Maximum]] (right)]] [[Drangajökull]], Iceland's northernmost glacier, melted shortly after 9,200 BP.<ref>{{Cite journal |last1=Harning |first1=David J. |last2=Geirsdóttir |first2=Áslaug |last3=Miller |first3=Gifford H. |last4=Zalzal |first4=Kate |date=1 December 2016 |title=Early Holocene deglaciation of Drangajökull, Vestfirðir, Iceland |url=https://linkinghub.elsevier.com/retrieve/pii/S0277379116303924 |journal=[[Quaternary Science Reviews]] |language=en |volume=153 |pages=192–198 |doi=10.1016/j.quascirev.2016.09.030 |bibcode=2016QSRv..153..192H |access-date=9 June 2024 |via=Elsevier Science Direct}}</ref> In [[Northern Germany]], the Middle Holocene saw a drastic increase in the amount of raised bogs, most likely related to sea level rise. Although human activity affected geomorphology and landscape evolution in Northern Germany throughout the Holocene, it only became a dominant influence in the last four centuries.<ref>{{Cite journal |last1=Gerdes |first1=G |last2=Petzelberger |first2=B. E. M |last3=Scholz-Böttcher |first3=B. M |last4=Streif |first4=H |date=1 January 2003 |title=The record of climatic change in the geological archives of shallow marine, coastal, and adjacent lowland areas of Northern Germany |url=https://www.researchgate.net/publication/223226453 |journal=[[Quaternary Science Reviews]] |series=Environmental response to climate and human impact in central Europe during the last 15000 years – a German contribution to PAGES-PEPIII |volume=22 |issue=1 |pages=101–124 |bibcode=2003QSRv...22..101G |doi=10.1016/S0277-3791(02)00183-X |issn=0277-3791 |access-date=27 October 2023}}</ref> In the [[French Alps]], geochemistry and lithium isotope signatures in lake sediments have suggested gradual soil formation from the [[Last Glacial Period]] to the [[Holocene climatic optimum]], and this soil development was altered by the settlement of human societies. Early anthropogenic activities such as deforestation and agriculture reinforced soil erosion, which peaked in the [[Middle Ages]] at an unprecedented level, marking human forcing as the most powerful factor affecting surface processes.<ref>{{Cite journal |last1=Zhang |first1=Xu (Yvon) |last2=Bajard |first2=Manon |last3=Bouchez |first3=Julien |last4=Sabatier |first4=Pierre |last5=Poulenard |first5=Jérôme |last6=Arnaud |first6=Fabien |last7=Crouzet |first7=Christian |last8=Kuessner |first8=Marie |last9=Dellinger |first9=Mathieu |last10=Gaillardet |first10=Jérôme |date=2023-12-15 |title=Evolution of the alpine Critical Zone since the Last Glacial Period using Li isotopes from lake sediments |url=https://www.sciencedirect.com/science/article/pii/S0012821X23004764 |journal=Earth and Planetary Science Letters |volume=624 |pages=118463 |doi=10.1016/j.epsl.2023.118463 |bibcode=2023E&PSL.62418463Z |issn=0012-821X|hdl=10852/110062 |hdl-access=free }}</ref> The sedimentary record from [[Aitoliko Lagoon]] indicates that wet winters locally predominated from 210 to 160 BP, followed by dry winter dominance from 160 to 20 BP.<ref>{{Cite journal |last1=Koutsodendris |first1=Andreas |last2=Brauer |first2=Achim |last3=Reed |first3=Jane M. |last4=Plessen |first4=Birgit |last5=Friedrich |first5=Oliver |last6=Hennrich |first6=Barbara |last7=Zacharias |first7=Ierotheos |last8=Pross |first8=Jörg |date=1 March 2017 |title=Climate variability in SE Europe since 1450 AD based on a varved sediment record from Etoliko Lagoon (Western Greece) |url=https://linkinghub.elsevier.com/retrieve/pii/S0277379117300471 |journal=[[Quaternary Science Reviews]] |language=en |volume=159 |pages=63–76 |doi=10.1016/j.quascirev.2017.01.010 |bibcode=2017QSRv..159...63K |access-date=19 July 2024 |via=Elsevier Science Direct}}</ref> === Africa === North Africa, dominated by the [[Sahara Desert]] in the present, was instead a savanna dotted with large lakes during the Early and Middle Holocene,<ref>{{Cite journal |last1=Armitage |first1=Simon J. |last2=Bristow |first2=Charlie S. |last3=Drake |first3=Nick A. |date=14 July 2015 |title=West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad |journal=[[Proceedings of the National Academy of Sciences of the United States of America]] |language=en |volume=112 |issue=28 |pages=8543–8548 |doi=10.1073/pnas.1417655112 |issn=0027-8424 |pmc=4507243 |pmid=26124133 |bibcode=2015PNAS..112.8543A |doi-access=free }}</ref> regionally known as the [[African humid period|African Humid Period]] (AHP).<ref>{{Cite journal |last1=Depreux |first1=Bruno |last2=Lefèvre |first2=David |last3=Berger |first3=Jean-François |last4=Segaoui |first4=Fatima |last5=Boudad |first5=Larbi |last6=El Harradji |first6=Abderrahmane |last7=Degeai |first7=Jean-Philippe |last8=Limondin-Lozouet |first8=Nicole |date=1 March 2021 |title=Alluvial records of the African Humid Period from the NW African highlands (Moulouya basin, NE Morocco) |journal=[[Quaternary Science Reviews]] |volume=255 |pages=106807 |doi=10.1016/j.quascirev.2021.106807 |bibcode=2021QSRv..25506807D |s2cid=233792780 |issn=0277-3791 |doi-access=free }}</ref> The northward migration of the [[Intertropical Convergence Zone]] (ITCZ) produced increased monsoon rainfall over North Africa.<ref>{{Cite journal |last1=Sha |first1=Lijuan |last2=Ait Brahim |first2=Yassine |last3=Wassenburg |first3=Jasper A. |last4=Yin |first4=Jianjun |last5=Peros |first5=Matthew |last6=Cruz |first6=Francisco W. |last7=Cai |first7=Yanjun |last8=Li |first8=Hanying |last9=Du |first9=Wenjing |last10=Zhang |first10=Haiwei |last11=Edwards |first11=R. Lawrence |last12=Cheng |first12=Hai |date=16 December 2019 |title=How Far North Did the African Monsoon Fringe Expand During the African Humid Period? Insights From Southwest Moroccan Speleothems |journal=[[Geophysical Research Letters]] |language=en |volume=46 |issue=23 |pages=14093–14102 |doi=10.1029/2019GL084879 |bibcode=2019GeoRL..4614093S |s2cid=213015081 |issn=0094-8276 |doi-access=free }}</ref> The lush vegetation of the Sahara brought an increase in [[pastoralism]].<ref>{{Cite journal |last1=Manning |first1=Katie |last2=Timpson |first2=Adrian |date=October 2014 |title=The demographic response to Holocene climate change in the Sahara |journal=[[Quaternary Science Reviews]] |language=en |volume=101 |pages=28–35 |doi=10.1016/j.quascirev.2014.07.003 |bibcode=2014QSRv..101...28M |s2cid=54923700 |doi-access=free }}</ref> The AHP ended around 5,500 BP, after which the Sahara began to dry and become the desert it is today.<ref>{{Cite journal |last1=Adkins |first1=Jess |last2=deMenocal |first2=Peter |last3=Eshel |first3=Gidon |date=20 October 2006 |title=The "African humid period" and the record of marine upwelling from excess 230 Th in Ocean Drilling Program Hole 658C: Th NORMALIZED FLUXES OFF NORTH AFRICA |journal=[[Paleoceanography and Paleoclimatology]] |language=en |volume=21 |issue=4 |doi=10.1029/2005PA001200|doi-access=free |bibcode=2006PalOc..21.4203A }}</ref> A stronger East African Monsoon during the Middle Holocene increased precipitation in East Africa and raised lake levels.<ref>{{Cite journal |last1=Forman |first1=Steven L. |last2=Wright |first2=David K. |last3=Bloszies |first3=Christopher |date=1 August 2014 |title=Variations in water level for Lake Turkana in the past 8500 years near Mt. Porr, Kenya and the transition from the African Humid Period to Holocene aridity |url=https://www.sciencedirect.com/science/article/pii/S0277379114001747 |journal=[[Quaternary Science Reviews]] |volume=97 |pages=84–101 |doi=10.1016/j.quascirev.2014.05.005 |bibcode=2014QSRv...97...84F |issn=0277-3791 |access-date=22 September 2023}}</ref> Around 800 AD, or 1,150 BP, a marine transgression occurred in southeastern Africa; in the Lake Lungué basin, this sea level highstand occurred from 740 to 910 AD, or from 1,210 to 1,040 BP, as evidenced by the lake's connection to the Indian Ocean at this time. This transgression was followed by a period of transition that lasted until 590 BP, when the region experienced significant aridification and began to be extensively used by humans for livestock herding.<ref name="LateHoloceneLakeLungué">{{Cite journal |last1=Sitoe |first1=Sandra Raúl |last2=Risberg |first2=Jan |last3=Norström |first3=Elin |last4=Westerberg |first4=Lars-Ove |date=1 November 2017 |title=Late Holocene sea-level changes and paleoclimate recorded in Lake Lungué, southern Mozambique |url=https://www.sciencedirect.com/science/article/pii/S0031018217302092 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=485 |pages=305–315 |doi=10.1016/j.palaeo.2017.06.022 |bibcode=2017PPP...485..305S |issn=0031-0182 |access-date=22 November 2023}}</ref> In the [[Kalahari Desert]], Holocene climate was overall very stable and environmental change was of low amplitude. Relatively cool conditions have prevailed since 4,000 BP.<ref>{{Cite journal |last=Lancaster |first=N. |date=1 May 1989 |title=Late Quaternary paleoenvironments in the southwestern Kalahari |url=https://dx.doi.org/10.1016/0031-0182%2889%2990114-4 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=70 |issue=4 |pages=367–376 |doi=10.1016/0031-0182(89)90114-4 |bibcode=1989PPP....70..367L |issn=0031-0182 |access-date=15 September 2023}}</ref> === Middle East === [[File:MUFT - Catal Höyük Modell.jpg|thumb|A model of [[Çatalhöyük]], a commonly cited example of a [[proto-city]], 7300 BC]] In the [[Middle East]], the Holocene brought a warmer and wetter climate, in contrast to the preceding cold, dry [[Younger Dryas]]. The Early Holocene saw the advent and spread of agriculture in the [[Fertile Crescent]]—[[sheep]], [[goat]], [[cattle]], and later [[pig]] were domesticated, as well as cereals, like [[wheat]] and [[barley]], and [[legume]]s—which would later [[Spread of agriculture|disperse]] into much of the world. This '[[Neolithic Revolution]]', likely influenced by Holocene climatic changes, included an increase in [[sedentism]] and population, eventually resulting in the world's first large-scale state societies in [[Mesopotamia]] and [[Ancient Egypt|Egypt]].<ref>{{Cite journal |last=Hole |first=F. |date=2007-05-11 |title=Agricultural sustainability in the semi-arid Near East |url=https://cp.copernicus.org/articles/3/193/2007/ |journal=Climate of the Past |language=en |volume=3 |issue=2 |pages=193–203 |doi=10.5194/cp-3-193-2007 |doi-access=free |bibcode=2007CliPa...3..193H |issn=1814-9332}}</ref> During the Middle Holocene, the [[Intertropical Convergence Zone]], which governs the incursion of monsoon precipitation through the [[Arabian Peninsula]], shifted southwards, resulting in increased aridity.<ref>{{Cite journal |last1=Enzel |first1=Yehouda |last2=Kushnir |first2=Yochanan |last3=Quade |first3=Jay |date=2015 |title=The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons |volume=129 |pages=69–91 |url=https://academiccommons.columbia.edu/doi/10.7916/D8WD3ZTQ |doi=10.7916/D8WD3ZTQ |issn=0921-8181}}</ref> In the Middle to Late Holocene, the coastline of the [[Levant]] and [[Persian Gulf]] receded, prompting a shift in human settlement patterns following this marine regression.<ref>{{Cite journal |last1=Giaime |first1=Matthieu |last2=Artzy |first2=Michal |last3=Jol |first3=Harry M. |last4=Salmon |first4=Yossi |last5=López |first5=Gloria I. |last6=Abu Hamid |first6=Amani |date=1 May 2022 |title=Refining Late-Holocene environmental changes of the Akko coastal plain and its impacts on the settlement and anchorage patterns of Tel Akko (Israel) |journal=[[Marine Geology (journal)|Marine Geology]] |volume=447 |pages=106778 |doi=10.1016/j.margeo.2022.106778 |s2cid=247636727 |issn=0025-3227|doi-access=free |bibcode=2022MGeol.44706778G }}</ref> === Central Asia === Central Asia experienced glacial-like temperatures until about 8,000 BP, when the Laurentide Ice Sheet collapsed.<ref>{{Cite journal |last1=Zhao |first1=Jiaju |last2=An |first2=Chen-Bang |last3=Huang |first3=Yongsong |last4=Morrill |first4=Carrie |last5=Chen |first5=Fa-Hu |date=15 December 2017 |title=Contrasting early Holocene temperature variations between monsoonal East Asia and westerly dominated Central Asia |url=https://linkinghub.elsevier.com/retrieve/pii/S0277379117300458 |journal=[[Quaternary Science Reviews]] |language=en |volume=178 |pages=14–23 |doi=10.1016/j.quascirev.2017.10.036 |bibcode=2017QSRv..178...14Z |access-date=19 July 2024 |via=Elsevier Science Direct}}</ref> In [[Xinjiang]], long-term Holocene warming increased meltwater supply during summers, creating large lakes and oases at low altitudes and inducing enhanced moisture recycling.<ref>{{Cite journal |last1=Rao |first1=Zhiguo |last2=Wu |first2=Dandan |last3=Shi |first3=Fuxi |last4=Guo |first4=Haichun |last5=Cao |first5=Jiantao |last6=Chen |first6=Fahu |date=1 April 2019 |title=Reconciling the 'westerlies' and 'monsoon' models: A new hypothesis for the Holocene moisture evolution of the Xinjiang region, NW China |url=https://www.sciencedirect.com/science/article/pii/S0012825218306780 |journal=[[Earth-Science Reviews]] |volume=191 |pages=263–272 |doi=10.1016/j.earscirev.2019.03.002 |bibcode=2019ESRv..191..263R |s2cid=134712945 |issn=0012-8252 |access-date=15 September 2023}}</ref> In the [[Tian Shan|Tien Shan]], sedimentological evidence from Swan Lake suggests the period between 8,500 and 6,900 BP was relatively warm, with steppe meadow vegetation being predominant. An increase in [[Cyperaceae]] from 6,900 to 2,600 BP indicates cooling and humidification of the Tian Shan climate that was interrupted by a warm period between 5,500 and 4,500 BP. After 2,600 BP, an alpine steppe climate prevailed across the region.<ref>{{Cite journal |last1=Huang |first1=Xiao-zhong |last2=Chen |first2=Chun-zhu |last3=Jia |first3=Wan-na |last4=An |first4=Cheng-bang |last5=Zhou |first5=Ai-feng |last6=Zhang |first6=Jia-wu |last7=Jin |first7=Ming |last8=Xia |first8=Dun-sheng |last9=Chen |first9=Fa-hu |last10=Grimm |first10=Eric C. |date=15 August 2015 |title=Vegetation and climate history reconstructed from an alpine lake in central Tienshan Mountains since 8.5ka BP |url=https://www.sciencedirect.com/science/article/pii/S0031018215002370 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=432 |pages=36–48 |doi=10.1016/j.palaeo.2015.04.027 |bibcode=2015PPP...432...36H |issn=0031-0182 |access-date=10 September 2023}}</ref> Sand dune evolution in the Bayanbulak Basin shows that the region was very dry from the Holocene's beginning until around 6,500 BP, when a wet interval began.<ref>{{Cite journal |last1=Long |first1=Hao |last2=Shen |first2=Ji |last3=Chen |first3=Jianhui |last4=Tsukamoto |first4=Sumiko |last5=Yang |first5=Linhai |last6=Cheng |first6=Hongyi |last7=Frechen |first7=Manfred |date=15 October 2017 |title=Holocene moisture variations over the arid central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China |url=https://www.sciencedirect.com/science/article/pii/S0277379117302883 |journal=[[Quaternary Science Reviews]] |volume=174 |pages=13–32 |doi=10.1016/j.quascirev.2017.08.024 |bibcode=2017QSRv..174...13L |issn=0277-3791 |access-date=10 September 2023}}</ref> In the [[Tibetan Plateau]], the moisture optimum spanned from around 7,500 to 5,500 BP.<ref>{{Cite journal |last1=Wünnemann |first1=Bernd |last2=Yan |first2=Dada |last3=Andersen |first3=Nils |last4=Riedel |first4=Frank |last5=Zhang |first5=Yongzhan |last6=Sun |first6=Qianli |last7=Hoelzmann |first7=Philipp |date=15 November 2018 |title=A 14 ka high-resolution δ18O lake record reveals a paradigm shift for the process-based reconstruction of hydroclimate on the northern Tibetan Plateau |url=https://www.sciencedirect.com/science/article/pii/S0277379118303548 |journal=[[Quaternary Science Reviews]] |volume=200 |pages=65–84 |doi=10.1016/j.quascirev.2018.09.040 |bibcode=2018QSRv..200...65W |s2cid=134520306 |issn=0277-3791 |access-date=10 September 2023}}</ref> The [[Tarim Basin]] records the onset of significant aridification around 3,000-2,000 BP.<ref>{{Cite journal |last1=Cai |first1=Yanjun |last2=Chiang |first2=John C.H. |last3=Breitenbach |first3=Sebastian F.M. |last4=Tan |first4=Liangcheng |last5=Cheng |first5=Hai |last6=Edwards |first6=R. Lawrence |last7=An |first7=Zhisheng |date=15 February 2017 |title=Holocene moisture changes in western China, Central Asia, inferred from stalagmites |url=https://linkinghub.elsevier.com/retrieve/pii/S0277379116307089 |journal=[[Quaternary Science Reviews]] |language=en |volume=158 |pages=15–28 |doi=10.1016/j.quascirev.2016.12.014 |bibcode=2017QSRv..158...15C |via=Elsevier Science Direct}}</ref> === South Asia === After 11,800 BP, and especially between 10,800 and 9,200 BP, [[Ladakh]] experienced tremendous moisture increase most likely related to the strengthening of the Indian Summer Monsoon (ISM). From 9,200 to 6,900 BP, relative aridity persisted in Ladakh. A second major humid phase occurred in Ladakh from 6,900 to 4,800 BP, after which the region was again arid.<ref>{{Cite journal |last1=Demske |first1=Dieter |last2=Tarasov |first2=Pavel E. |last3=Wünnemann |first3=Bernd |last4=Riedel |first4=Frank |date=15 August 2009 |title=Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India |url=https://linkinghub.elsevier.com/retrieve/pii/S0031018209001928 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=279 |issue=3–4 |pages=172–185 |doi=10.1016/j.palaeo.2009.05.008 |bibcode=2009PPP...279..172D |access-date=27 September 2023}}</ref> From 900 to 1,200 AD, during the MWP, the ISM was again strong as evidenced by low δ<sup>18</sup>O values from the Ganga Plain.<ref>{{Cite journal |last1=Singh |first1=Dhruv Sen |last2=Gupta |first2=Anil K. |last3=Sangode |first3=S. J. |last4=Clemens |first4=Steven C. |last5=Prakasam |first5=M. |last6=Srivastava |first6=Priyeshu |last7=Prajapati |first7=Shailendra K. |date=12 June 2015 |title=Multiproxy record of monsoon variability from the Ganga Plain during 400–1200 A.D. |url=https://www.sciencedirect.com/science/article/pii/S1040618215001470 |journal=[[Quaternary International]] |series=Updated Quaternary Climatic Research in parts of the Third Pole Selected papers from the HOPE-2013 conference, Nainital, India |volume=371 |pages=157–163 |bibcode=2015QuInt.371..157S |doi=10.1016/j.quaint.2015.02.040 |issn=1040-6182 |access-date=10 September 2023}}</ref> The sediments of [[Lonar Lake]] in [[Maharashtra]] record dry conditions around 11,400 BP that transitioned into a much wetter climate from 11,400 to 11,100 BP due to intensification of the ISM. Over the Early Holocene, the region was very wet, but during the Middle Holocene from 6,200 to 3,900 BP, aridification occurred, with the subsequent Late Holocene being relatively arid as a whole.<ref>{{Cite journal |last1=Menzel |first1=Philip |last2=Gaye |first2=Birgit |last3=Mishra |first3=Praveen K. |last4=Anoop |first4=Ambili |last5=Basavaiah |first5=Nathani |last6=Marwan |first6=Norbert |last7=Plessen |first7=Birgit |last8=Prasad |first8=Sushma |last9=Riedel |first9=Nils |last10=Stebich |first10=Martina |last11=Wiesner |first11=Martin G. |date=15 September 2014 |title=Linking Holocene drying trends from Lonar Lake in monsoonal central India to North Atlantic cooling events |url=https://www.sciencedirect.com/science/article/pii/S0031018214003009 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=410 |pages=164–178 |doi=10.1016/j.palaeo.2014.05.044 |bibcode=2014PPP...410..164M |issn=0031-0182 |access-date=15 September 2023}}</ref> Coastal southwestern India experienced a stronger ISM from 9,690 to 7,560 BP, during the HCO. From 3,510 to 2,550 BP, during the Late Holocene, the ISM became weaker, although this weakening was interrupted by an interval of unusually high ISM strength from 3,400 to 3,200 BP.<ref>{{Cite journal |last1=Shaji |first1=Jithu |last2=Banerji |first2=Upasana S. |last3=Maya |first3=K. |last4=Joshi |first4=Kumar Batuk |last5=Dabhi |first5=Ankur J. |last6=Bharti |first6=Nisha |last7=Bhushan |first7=Ravi |last8=Padmalal |first8=D. |date=30 December 2022 |title=Holocene monsoon and sea-level variability from coastal lowlands of Kerala, SW India |url=https://linkinghub.elsevier.com/retrieve/pii/S104061822200074X |journal=[[Quaternary International]] |language=en |volume=642 |pages=48–62 |doi=10.1016/j.quaint.2022.03.005 |bibcode=2022QuInt.642...48S |s2cid=247553867 |access-date=10 September 2023}}</ref> === East Asia === Southwestern China experienced long-term warming during the Early Holocene up until ~7,000 BP.<ref>{{Cite journal |last1=Sun |first1=Weiwei |last2=Zhang |first2=Enlou |last3=Jiang |first3=Qingfeng |last4=Ning |first4=Dongliang |last5=Luo |first5=Wenlei |date=October 2023 |title=Temperature changes during the last deglaciation and early Holocene in southwest China |url=https://linkinghub.elsevier.com/retrieve/pii/S0921818123002114 |journal=[[Global and Planetary Change]] |language=en |volume=229 |pages=104238 |doi=10.1016/j.gloplacha.2023.104238 |bibcode=2023GPC...22904238S |access-date=9 June 2024 |via=Elsevier Science Direct}}</ref> Northern China experienced an abrupt aridification event approximately 4,000 BP.<ref>{{Cite journal |last1=Guo |first1=Zhengtang |last2=Petit-Maire |first2=Nicole |last3=Kröpelin |first3=Stefan |date=November 2000 |title=Holocene non-orbital climatic events in present-day arid areas of northern Africa and China |url=https://linkinghub.elsevier.com/retrieve/pii/S0921818100000370 |journal=[[Global and Planetary Change]] |volume=26 |issue=1–3 |pages=97–103 |doi=10.1016/S0921-8181(00)00037-0 |bibcode=2000GPC....26...97G |access-date=10 September 2023}}</ref> From around 3,500 to 3,000 BP, northeastern China underwent a prolonged cooling, manifesting itself with the disruption of Bronze Age civilisations in the region.<ref>{{Cite journal |last1=Zheng |first1=Yanhong |last2=Yu |first2=Shi-Yong |last3=Fan |first3=Tongyu |last4=Oppenheimer |first4=Clive |last5=Yu |first5=Xuefeng |last6=Liu |first6=Zhao |last7=Xian |first7=Feng |last8=Liu |first8=Zhen |last9=Li |first9=Jianyong |last10=Li |first10=Jiahao |date=15 July 2021 |title=Prolonged cooling interrupted the Bronze Age cultures in northeastern China 3500 years ago |url=https://www.sciencedirect.com/science/article/pii/S0031018221002467 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=574 |pages=110461 |doi=10.1016/j.palaeo.2021.110461 |bibcode=2021PPP...57410461Z |s2cid=236229299 |issn=0031-0182 |access-date=15 October 2023}}</ref> Eastern and southern China, the monsoonal regions of China, were wetter than present in the Early and Middle Holocene.<ref name="VegetationResponseMonsoonChina">{{Cite journal |last1=Zhao |first1=Yan |last2=Yu |first2=Zicheng |last3=Chen |first3=Fahu |last4=Zhang |first4=Jiawu |last5=Yang |first5=Bao |date=1 December 2009 |title=Vegetation response to Holocene climate change in monsoon-influenced region of China |url=https://www.sciencedirect.com/science/article/pii/S0012825209001627 |journal=[[Earth-Science Reviews]] |volume=97 |issue=1 |pages=242–256 |doi=10.1016/j.earscirev.2009.10.007 |bibcode=2009ESRv...97..242Z |issn=0012-8252 |access-date=10 September 2023}}</ref> Lake Huguangyan's TOC, δ<sup>13</sup>C<sub>wax</sub>, δ<sup>13</sup>C<sub>org</sub>, δ<sup>15</sup>N values suggest the period of peak moisture lasted from 9,200 to 1,800 BP and was attributable to a strong East Asian Summer Monsoon (EASM).<ref>{{Cite journal |last1=Jia |first1=Guodong |last2=Bai |first2=Yang |last3=Yang |first3=Xiaoqiang |last4=Xie |first4=Luhua |last5=Wei |first5=Gangjian |last6=Ouyang |first6=Tingping |last7=Chu |first7=Guoqiang |last8=Liu |first8=Zhonghui |last9=Peng |first9=Ping'an |date=1 March 2015 |title=Biogeochemical evidence of Holocene East Asian summer and winter monsoon variability from a tropical maar lake in southern China |url=https://www.sciencedirect.com/science/article/pii/S0277379115000098 |journal=[[Quaternary Science Reviews]] |volume=111 |pages=51–61 |doi=10.1016/j.quascirev.2015.01.002 |issn=0277-3791 |access-date=10 September 2023}}</ref> Late Holocene cooling events in the region were dominantly influenced by solar forcing, with many individual cold snaps linked to solar minima such as the Oort, [[Wolf minimum|Wolf]], [[Spörer Minimum|Spörer]], and [[Maunder Minimum|Maunder Minima]].<ref>{{Cite journal |last=Park |first=Jungjae |date=1 March 2017 |title=Solar and tropical ocean forcing of late-Holocene climate change in coastal East Asia |url=https://www.sciencedirect.com/science/article/pii/S0031018217300044 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |volume=469 |pages=74–83 |doi=10.1016/j.palaeo.2017.01.005 |bibcode=2017PPP...469...74P |issn=0031-0182 |access-date=15 September 2023}}</ref> A notable cooling event in southeastern China occurred 3,200 BP.<ref>{{Cite journal |last1=Wang |first1=Mengyuan |last2=Zheng |first2=Zhuo |last3=Man |first3=Meiling |last4=Hu |first4=Jianfang |last5=Gao |first5=Quanzhou |date=5 July 2017 |title=Branched GDGT-based paleotemperature reconstruction of the last 30,000 years in humid monsoon region of Southeast China |url=https://linkinghub.elsevier.com/retrieve/pii/S0009254117303017 |journal=[[Chemical Geology]] |language=en |volume=463 |pages=94–102 |doi=10.1016/j.chemgeo.2017.05.014 |bibcode=2017ChGeo.463...94W |access-date=19 July 2024 |via=Elsevier Science Direct}}</ref> Strengthening of the winter monsoon occurred around 5,500, 4,000, and 2,500 BP.<ref>{{Cite journal |last1=Li |first1=Zhen |last2=Pospelova |first2=Vera |last3=Liu |first3=Lejun |last4=Zhou |first4=Rui |last5=Song |first5=Bing |date=1 October 2017 |title=High-resolution palynological record of Holocene climatic and oceanographic changes in the northern South China Sea |url=https://linkinghub.elsevier.com/retrieve/pii/S0031018217302626 |journal=[[Palaeogeography, Palaeoclimatology, Palaeoecology]] |language=en |volume=483 |pages=94–124 |doi=10.1016/j.palaeo.2017.03.009 |bibcode=2017PPP...483...94L |access-date=19 July 2024 |via=Elsevier Science Direct}}</ref> Monsoonal regions of China became more arid in the Late Holocene.<ref name="VegetationResponseMonsoonChina" /> In the Sea of Japan, the Middle Holocene was notable for its warmth, with rhythmic temperature fluctuations every 400–500 and 1,000 years.<ref>{{Cite journal |last=Koizumi |first=Itaru |date=December 2008 |title=Diatom-derived SSTs (Td′ ratio) indicate warm seas off Japan during the middle Holocene (8.2–3.3 kyr BP) |url=https://www.sciencedirect.com/science/article/pii/S037783980800100X |journal=Marine Micropaleontology |language=en |volume=69 |issue=3–4 |pages=263–281 |doi=10.1016/j.marmicro.2008.08.004 |bibcode=2008MarMP..69..263K |access-date=11 October 2024 |via=Elsevier Science Direct}}</ref> === Southeast Asia === Before 7,500 BP, the [[Gulf of Thailand]] was exposed above sea level and was very arid. A marine transgression occurred from 7,500 to 6,200 BP amidst global warming.<ref>{{Cite journal |last1=Zhang |first1=Hui |last2=Liu |first2=Shengfa |last3=Wu |first3=Kaikai |last4=Cao |first4=Peng |last5=Pan |first5=Hui-Juan |last6=Wang |first6=Hongmin |last7=Cui |first7=Jingjing |last8=Li |first8=Jingrui |last9=Khokiattiwong |first9=Somkiat |last10=Kornkanitnan |first10=Narumol |last11=Shi |first11=Xuefa |date=20 August 2022 |title=Evolution of sedimentary environment in the Gulf of Thailand since the last deglaciation |url=https://www.sciencedirect.com/science/article/pii/S104061822100077X |journal=[[Quaternary International]] |series=Understanding the Late Quaternary Paleomonsoon and Paleoenvironmental Shifts of Asia |volume=629 |pages=36–43 |doi=10.1016/j.quaint.2021.02.018 |bibcode=2022QuInt.629...36Z |s2cid=233897984 |issn=1040-6182 |access-date=15 September 2023}}</ref> === North America === During the Middle Holocene, western North America was drier than present, with wetter winters and drier summers.<ref>{{Cite journal |last1=Steinman |first1=Byron A. |last2=Pompeani |first2=David P. |last3=Abbott |first3=Mark B. |last4=Ortiz |first4=Joseph D. |last5=Stansell |first5=Nathan D. |last6=Finkenbinder |first6=Matthew S. |last7=Mihindukulasooriya |first7=Lorita N. |last8=Hillman |first8=Aubrey L. |date=15 June 2016 |title=Oxygen isotope records of Holocene climate variability in the Pacific Northwest |journal=[[Quaternary Science Reviews]] |volume=142 |pages=40–60 |doi=10.1016/j.quascirev.2016.04.012 |bibcode=2016QSRv..142...40S |issn=0277-3791 |doi-access=free }}</ref> After the end of the thermal maximum of the HCO around 4,500 BP, the [[East Greenland Current]] underwent strengthening.<ref>{{Cite journal |last1=Perner |first1=Kerstin |last2=Moros |first2=Matthias |last3=Lloyd |first3=Jeremy M. |last4=Jansen |first4=Eystein |last5=Stein |first5=Rüdiger |date=1 December 2015 |title=Mid to late Holocene strengthening of the East Greenland Current linked to warm subsurface Atlantic water |url=https://www.sciencedirect.com/science/article/pii/S0277379115301311 |journal=[[Quaternary Science Reviews]] |volume=129 |pages=296–307 |doi=10.1016/j.quascirev.2015.10.007 |bibcode=2015QSRv..129..296P |s2cid=129732336 |issn=0277-3791 |access-date=11 September 2023}}</ref> A massive megadrought occurred from 2,800 to 1,850 BP in the [[Great Basin]].<ref>{{Cite journal |last1=Mensing |first1=Scott A. |last2=Sharpe |first2=Saxon E. |last3=Tunno |first3=Irene |last4=Sada |first4=Don W. |last5=Thomas |first5=Jim M. |last6=Starratt |first6=Scott |last7=Smith |first7=Jeremy |date=15 October 2013 |title=The Late Holocene Dry Period: multiproxy evidence for an extended drought between 2800 and 1850 cal yr BP across the central Great Basin, USA |url=https://www.sciencedirect.com/science/article/pii/S0277379113003156 |journal=[[Quaternary Science Reviews]] |volume=78 |pages=266–282 |doi=10.1016/j.quascirev.2013.08.010 |bibcode=2013QSRv...78..266M |issn=0277-3791 |access-date=10 September 2023}}</ref> Eastern North America underwent abrupt warming and humidification around 10,500 BP and then declined from 9,300 to 9,100 BP. The region has undergone a long term wettening since 5,500 BP occasionally interrupted by intervals of high aridity. A major cool event lasting from 5,500 to 4,700 BP was coeval with a major humidification before being terminated by a major drought and warming at the end of that interval.<ref>{{Cite journal |last1=Shuman |first1=Bryan N. |last2=Marsicek |first2=Jeremiah |date=1 June 2016 |title=The structure of Holocene climate change in mid-latitude North America |journal=[[Quaternary Science Reviews]] |volume=141 |pages=38–51 |doi=10.1016/j.quascirev.2016.03.009 |bibcode=2016QSRv..141...38S |issn=0277-3791 |doi-access=free }}</ref> === South America === During the Early Holocene, relative sea level rose in the [[Bahia]] region, causing a landward expansion of mangroves. During the Late Holocene, the mangroves declined as sea level dropped and freshwater supply increased.<ref>{{Cite journal |last1=Fontes |first1=Neuza Araújo |last2=Moraes |first2=Caio A. |last3=Cohen |first3=Marcelo C L |last4=Alves |first4=Igor Charles C. |last5=França |first5=Marlon Carlos |last6=Pessenda |first6=Luiz C R |last7=Francisquini |first7=Mariah Izar |last8=Bendassolli |first8=José Albertino |last9=Macario |first9=Kita |last10=Mayle |first10=Francis |date=February 2017 |title=The Impacts of the Middle Holocene High Sea-Level Stand and Climatic Changes on Mangroves of the Jucuruçu River, Southern Bahia – Northeastern Brazil |journal=[[Radiocarbon (journal)|Radiocarbon]] |language=en |volume=59 |issue=1 |pages=215–230 |doi=10.1017/RDC.2017.6 |bibcode=2017Radcb..59..215F |s2cid=133047191 |issn=0033-8222 |doi-access=free }}</ref> In the [[Santa Catarina (state)|Santa Catarina]] region, the maximum sea level highstand was around 2.1 metres above present and occurred about 5,800 to 5,000 BP.<ref>{{Cite journal |last1=Angulo |first1=Rodolfo J. |last2=Lessa |first2=Guilherme C. |last3=Souza |first3=Maria Cristina de |date=1 March 2006 |title=A critical review of mid- to late-Holocene sea-level fluctuations on the eastern Brazilian coastline |url=https://www.sciencedirect.com/science/article/pii/S0277379105000843 |journal=[[Quaternary Science Reviews]] |volume=25 |issue=5 |pages=486–506 |doi=10.1016/j.quascirev.2005.03.008 |bibcode=2006QSRv...25..486A |issn=0277-3791 |access-date=17 September 2023}}</ref> Sea levels at [[Rocas Atoll]] were likewise higher than present for much of the Late Holocene.<ref>{{Cite journal |last1=Angulo |first1=Rodolfo José |last2=de Souza |first2=Maria Cristina |last3=da Camara Rosa |first3=Maria Luiza Correa |last4=Caron |first4=Felipe |last5=Barboza |first5=Eduardo G. |last6=Costa |first6=Mirella Borba Santos Ferreira |last7=Macedo |first7=Eduardo |last8=Vital |first8=Helenice |last9=Gomes |first9=Moab Praxedes |last10=Garcia |first10=Khalil Bow Ltaif |date=1 May 2022 |title=Paleo-sea levels, Late-Holocene evolution, and a new interpretation of the boulders at the Rocas Atoll, southwestern Equatorial Atlantic |url=https://www.sciencedirect.com/science/article/pii/S0025322722000512 |journal=[[Marine Geology (journal)|Marine Geology]] |volume=447 |pages=106780 |doi=10.1016/j.margeo.2022.106780 |bibcode=2022MGeol.44706780A |s2cid=247822701 |issn=0025-3227 |access-date=17 September 2023}}</ref> === Australia === The Northwest Australian Summer Monsoon was in a strong phase from 8,500 to 6,400 BP, from 5,000 to 4,000 BP (possibly until 3,000 BP), and from 1,300 to 900 BP, with weak phases in between and the current weak phase beginning around 900 BP after the end of the last strong phase.<ref>{{Cite journal |last1=Eroglu |first1=Deniz |last2=McRobie |first2=Fiona H. |last3=Ozken |first3=Ibrahim |last4=Stemler |first4=Thomas |last5=Wyrwoll |first5=Karl-Heinz |last6=Breitenbach |first6=Sebastian F. M. |last7=Marwan |first7=Norbert |last8=Kurths |first8=Jürgen |date=26 September 2016 |title=See–saw relationship of the Holocene East Asian–Australian summer monsoon |journal=[[Nature Communications]] |language=en |volume=7 |issue=1 |pages=12929 |doi=10.1038/ncomms12929 |issn=2041-1723 |doi-access=free |pmid=27666662 |pmc=5052686 |bibcode=2016NatCo...712929E }}</ref> === New Zealand === Ice core measurements imply that the [[sea surface temperature]] (SST) gradient east of New Zealand, across the subtropical front (STF), was around 2 degrees Celsius during the HCO. This temperature gradient is significantly less than modern times, which is around 6 degrees Celsius. A study utilizing five SST proxies from 37°S to 60°S latitude confirmed that the strong temperature gradient was confined to the area immediately south of the STF, and is correlated with reduced westerly winds near New Zealand.<ref>{{Cite journal |last1=Prebble |first1=J. G. |last2=Bostock |first2=H. C. |last3=Cortese |first3=G. |last4=Lorrey |first4=A. M. |last5=Hayward |first5=B. W. |last6=Calvo |first6=E. |last7=Northcote |first7=L. C. |last8=Scott |first8=G. H. |last9=Neil |first9=H. L. |date=August 2017 |title=Evidence for a Holocene Climatic Optimum in the southwest Pacific: A multiproxy study: Holocene Optimum in SW Pacific |url=http://doi.wiley.com/10.1002/2016PA003065 |journal=Paleoceanography |language=en |volume=32 |issue=8 |pages=763–779 |doi=10.1002/2016PA003065 |hdl-access=free |hdl=10261/155815}}</ref> Since 7,100 BP, New Zealand experienced 53 cyclones similar in magnitude to [[Cyclone Bola]].<ref>{{Cite journal |last1=Orpin |first1=A. R. |last2=Carter |first2=L. |last3=Page |first3=M. J. |last4=Cochran |first4=U. A. |last5=Trustrum |first5=N. A. |last6=Gomez |first6=B. |last7=Palmer |first7=A. S. |last8=Mildenhall |first8=D. C. |last9=Rogers |first9=K. M. |last10=Brackley |first10=H. L. |last11=Northcote |first11=L. |date=15 April 2010 |title=Holocene sedimentary record from Lake Tutira: A template for upland watershed erosion proximal to the Waipaoa Sedimentary System, northeastern New Zealand |url=https://www.sciencedirect.com/science/article/pii/S002532270900293X |journal=[[Marine Geology (journal)|Marine Geology]] |series=From mountain source to ocean sink – the passage of sediment across an active margin, Waipaoa Sedimentary System, New Zealand |volume=270 |issue=1 |pages=11–29 |doi=10.1016/j.margeo.2009.10.022 |bibcode=2010MGeol.270...11O |issn=0025-3227 |access-date=11 September 2023}}</ref> === Pacific === Evidence from the [[Galápagos Islands]] shows that the [[El Niño–Southern Oscillation#Southern Oscillation|El Niño–Southern Oscillation]] (ENSO) was significantly weaker during the Middle Holocene, but that the strength of ENSO became moderate to high over the Late Holocene.<ref>{{Cite journal |last1=Zhang |first1=Zhaohui |last2=Leduc |first2=Guillaume |last3=Sachs |first3=Julian P. |date=15 October 2014 |title=El Niño evolution during the Holocene revealed by a biomarker rain gauge in the Galápagos Islands |url=https://www.sciencedirect.com/science/article/pii/S0012821X14004634 |journal=[[Earth and Planetary Science Letters]] |volume=404 |pages=420–434 |doi=10.1016/j.epsl.2014.07.013 |bibcode=2014E&PSL.404..420Z |issn=0012-821X}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Holocene
(section)
Add topic