Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Helix
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Arc length, curvature and torsion{{anchor|Arc length|Curvature|Torsion}}=== A circular helix of radius <math>a>0</math> and slope {{math|{{sfrac|''a''|''b''}}}} (or pitch {{math|2''Οb''}}) expressed in Cartesian coordinates as the [[parametric equation]] :<math>t\mapsto (a\cos t, a\sin t, bt), t\in [0,T]</math> has an [[arc length]] of :<math>A = T\cdot \sqrt{a^2+b^2},</math> a [[Curvature#One dimension in three dimensions: Curvature of space curves|curvature]] of :<math>\frac{a}{a^2+b^2},</math> and a [[Torsion of a curve|torsion]] of :<math>\frac{b}{a^2+b^2}.</math> A helix has constant non-zero curvature and torsion. A helix is the vector-valued function <math display="block">\begin{align} \mathbf{r}&=a\cos t \mathbf{i}+a\sin t \mathbf{j}+ b t\mathbf{k}\\[6px] \mathbf{v}&=-a\sin t \mathbf{i}+a\cos t \mathbf{j}+ b \mathbf{k}\\[6px] \mathbf{a}&=-a\cos t \mathbf{i}-a\sin t \mathbf{j}+ 0\mathbf{k}\\[6px] |\mathbf{v}|&=\sqrt{(-a\sin t )^2 +(a\cos t)^2 + b^2}=\sqrt{a^2 +b^2}\\[6px] |\mathbf{a}| &= \sqrt{(-a\sin t )^2 +(a\cos t)^2 } = a\\[6px] s(t) &= \int_{0}^{t}\sqrt{a^2 +b^2}d\tau = \sqrt{a^2 +b^2} t \end{align}</math> So a helix can be reparameterized as a function of {{mvar|s}}, which must be unit-speed: <math display="block">\mathbf{r}(s) = a\cos \frac{s}{\sqrt{a^2 +b^2} } \mathbf{i}+a\sin \frac{s}{\sqrt{a^2 +b^2}} \mathbf{j}+ \frac{bs}{\sqrt{a^2 +b^2}} \mathbf{k}</math> The unit tangent vector is <math display="block">\frac{d \mathbf{r}}{d s} = \mathbf{T} = \frac{-a}{\sqrt{a^2 +b^2} }\sin \frac{s}{\sqrt{a^2 +b^2} } \mathbf{i}+\frac{a}{\sqrt{a^2 +b^2} }\cos \frac{s}{\sqrt{a^2 +b^2} }\mathbf{j}+ \frac{b}{\sqrt{a^2 +b^2}} \mathbf{k}</math> The normal vector is <math display="block">\frac{d \mathbf{T}}{d s} = \kappa \mathbf{N} = \frac{-a}{a^2 +b^2 }\cos \frac{s}{\sqrt{a^2 +b^2} } \mathbf{i}+\frac{-a}{a^2 +b^2} \sin \frac{s}{\sqrt{a^2 +b^2} }\mathbf{j}+ 0 \mathbf{k}</math> Its curvature is <math display="block">\kappa = \left|\frac{d\mathbf{T}}{ds}\right|= \frac{a}{a^2 +b^2 }</math>. The unit normal vector is <math display="block">\mathbf{N}=-\cos \frac{s}{\sqrt{a^2 +b^2} } \mathbf{i} - \sin \frac{s}{\sqrt{a^2 +b^2} } \mathbf{j} + 0 \mathbf{k}</math> The binormal vector is <math display="block"> \begin{align} \mathbf{B}=\mathbf{T}\times\mathbf{N} &= \frac{1}{\sqrt{a^2 +b^2 }} \left( b\sin \frac{s}{\sqrt{a^2 +b^2}}\mathbf{i} - b\cos \frac{s}{\sqrt{a^2 +b^2}}\mathbf{j}+ a \mathbf{k}\right)\\[12px] \frac{d\mathbf{B}}{ds} &= \frac{1}{a^2 +b^2} \left( b\cos \frac{s}{\sqrt{a^2 +b^2}} \mathbf{i} + b\sin \frac{s}{\sqrt{a^2 +b^2}}\mathbf{j}+ 0 \mathbf{k} \right) \end{align}</math> Its torsion is <math display="block">\tau = \left| \frac{d\mathbf{B}}{ds} \right| = \frac{b}{a^2 +b^2}.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Helix
(section)
Add topic