Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Heat treating
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Hypoeutectoid alloys=== A hypoeutectic alloy has two separate melting points. Both are above the eutectic melting point for the system but are below the melting points of any constituent forming the system. Between these two melting points, the alloy will exist as part solid and part liquid. The constituent with the higher melting point will solidify first. When completely solidified, a hypoeutectic alloy will often be in a solid solution. Similarly, a '''hypoeutectoid alloy''' has two critical temperatures, called "arrests". Between these two temperatures, the alloy will exist partly as the solution and partly as a separate crystallizing phase, called the "pro eutectoid phase". These two temperatures are called the upper (A<sub>3</sub>) and lower (A<sub>1</sub>) transformation temperatures. As the solution cools from the upper transformation temperature toward an insoluble state, the excess base metal will often be forced to "crystallize-out", becoming the pro eutectoid. This will occur until the remaining concentration of solutes reaches the eutectoid level, which will then crystallize as a separate microstructure. For example, a hypoeutectoid steel contains less than 0.77% carbon. Upon cooling a hypoeutectoid steel from the austenite transformation temperature, small islands of proeutectoid-ferrite will form. These will continue to grow and the carbon will recede until the eutectoid concentration in the rest of the steel is reached. This eutectoid mixture will then crystallize as a microstructure of pearlite. Since ferrite is softer than pearlite, the two microstructures combine to increase the [[ductility]] of the alloy. Consequently, the hardenability of the alloy is lowered.<ref name="Dossett, 2006, 17-22" >{{harvnb|Dossett|Boyer|2006|pages=17β22}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Heat treating
(section)
Add topic