Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Glycogen storage disease
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Muscle ==== Glycogen storage diseases that involve skeletal muscle typically have exercise-induced ([[Signs and symptoms#Dynamic and static|dynamic]]) symptoms, such as premature [[muscle fatigue]], rather than fixed [[Muscle weakness|weakness]] ([[Signs and symptoms#Dynamic and static|static]]) symptoms.<ref name=":12">{{Cite journal |last1=Darras |first1=B. T. |last2=Friedman |first2=N. R. |date=February 2000 |title=Metabolic myopathies: a clinical approach; part I |url=https://pubmed.ncbi.nlm.nih.gov/10738913/ |journal=Pediatric Neurology |volume=22 |issue=2 |pages=87–97 |doi=10.1016/s0887-8994(99)00133-2 |issn=0887-8994 |pmid=10738913}}</ref> Differential diagnoses for glycogen storage diseases that involve fixed muscle weakness, particularly of the [[proximal]] muscles, would be an [[inflammatory myopathy]] or a [[Limb–girdle muscular dystrophy|limb-girdle muscular dystrophy]].<ref name=":12" /> For those with exercise intolerance and/or proximal muscle weakness, the [[endocrinopathies]] should be considered.<ref>{{Citation |last1=Bhavaraju-Sanka |first1=R. |title=Myopathy, Endocrine |date=2014-01-01 |url=https://www.sciencedirect.com/science/article/pii/B978012385157400628X |pages=259–264 |editor-last=Aminoff |editor-first=Michael J. |access-date=2023-05-24 |place=Oxford |publisher=Academic Press |language=en |isbn=978-0-12-385158-1 |last2=Jackson |first2=C. E. |editor2-last=Daroff |editor2-first=Robert B. |encyclopedia=Encyclopedia of the Neurological Sciences (Second Edition)}}</ref><ref name=":13">{{Cite journal |last1=Rodolico |first1=Carmelo |last2=Bonanno |first2=Carmen |last3=Pugliese |first3=Alessia |last4=Nicocia |first4=Giulia |last5=Benvenga |first5=Salvatore |last6=Toscano |first6=Antonio |date=2020-09-01 |title=Endocrine myopathies: clinical and histopathological features of the major forms |journal=Acta Myologica |volume=39 |issue=3 |pages=130–135 |doi=10.36185/2532-1900-017 |issn=1128-2460 |pmc=7711326 |pmid=33305169}}</ref><ref name=":14">{{Cite journal |last1=Sharma |first1=Vikas |last2=Borah |first2=Papori |last3=Basumatary |first3=Lakshya J. |last4=Das |first4=Marami |last5=Goswami |first5=Munindra |last6=Kayal |first6=Ashok K. |date=2014 |title=Myopathies of endocrine disorders: A prospective clinical and biochemical study |journal=Annals of Indian Academy of Neurology |volume=17 |issue=3 |pages=298–302 |doi=10.4103/0972-2327.138505 |issn=0972-2327 |pmc=4162016 |pmid=25221399 |doi-access=free}}</ref> The timing of the symptoms of exercise intolerance, such as muscle fatigue and cramping, is important in order to help distinguish it from other [[Metabolic myopathy|metabolic myopathies]] such as [[Fatty-acid metabolism disorder|fatty acid metabolism disorders]].<ref>{{Cite web |last=Bhai |first=Salman |date=September 2021 |title=Neuromuscular Notes: Diagnosing Metabolic Myopathies |url=https://practicalneurology.com/articles/2021-sept/neuromuscular-notes-diagnosing-metabolic-myopathies |access-date=May 24, 2023 |website=Practical Neurology |language=en}}</ref> Problems originating within the circulatory system, rather than the muscle itself, can produce exercise-induced muscle fatigue, pain and cramping that alleviates with rest, resulting from inadequate blood flow ([[ischemia]]) to the muscles. Ischemia that often produces symptoms in the leg muscles includes [[intermittent claudication]], [[popliteal artery entrapment syndrome]], and [[chronic venous insufficiency]]. Diseases disrupting the neuromuscular junction can cause abnormal muscle fatigue, such as [[myasthenia gravis]], an autoimmune disease.<ref>{{Cite journal |last=Gilhus |first=Nils Erik |date=2021-03-01 |title=Physical training and exercise in myasthenia gravis |url=https://www.sciencedirect.com/science/article/pii/S0960896620306982 |journal=Neuromuscular Disorders |volume=31 |issue=3 |pages=169–173 |doi=10.1016/j.nmd.2020.12.004 |pmid=33461846 |s2cid=229372884 |issn=0960-8966|hdl=11250/2767222 |hdl-access=free }}</ref> Similar, are [[Lambert–Eaton myasthenic syndrome]] (autoimmune) and the [[congenital myasthenic syndrome]]s (genetic). Diseases can disrupt glycogen metabolism [[Disease#Concepts|secondary]] to the primary disease. Abnormal thyroid function—hypo- and hyperthyroidism—can manifest as myopathy with symptoms of exercise-induced muscle fatigue, cramping, muscle pain and may include proximal weakness or muscle hypertrophy (particularly of the calves).<ref>{{Cite web |title=Myopathies associated with thyroid disease |url=https://www.medlink.com/articles/myopathies-associated-with-thyroid-disease |access-date=2023-05-24 |website=MedLink Neurology |language=en}}</ref><ref name=":13" /> [[Hypothyroidism]] up-regulates glycogen synthesis and down-regulates glycogenolysis and glycolysis; conversely, [[hyperthyroidism]] does the reverse, up-regulating glycogenolysis and glycolysis while down-regulating glycogen synthesis.<ref name=":15">{{Cite journal |last1=Dimitriadis |first1=G D |last2=Leighton |first2=B |last3=Parry-Billings |first3=M |last4=West |first4=D |last5=Newsholme |first5=E A |date=1989-01-15 |title=Effects of hypothyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin in the soleus muscle of the rat. |journal=Biochemical Journal |volume=257 |issue=2 |pages=369–373 |doi=10.1042/bj2570369 |issn=0264-6021 |pmc=1135589 |pmid=2649073}}</ref><ref name=":16">{{Cite journal |last1=Celsing |first1=F. |last2=Blomstrand |first2=E. |last3=Melichna |first3=J. |last4=Terrados |first4=N. |last5=Clausen |first5=N. |last6=Lins |first6=P. E. |last7=Jansson |first7=E. |date=April 1986 |title=Effect of hyperthyroidism on fibre-type composition, fibre area, glycogen content and enzyme activity in human skeletal muscle |url=https://pubmed.ncbi.nlm.nih.gov/2937605/ |journal=Clinical Physiology |volume=6 |issue=2 |pages=171–181 |doi=10.1111/j.1475-097x.1986.tb00066.x |issn=0144-5979 |pmid=2937605}}</ref><ref>{{Cite journal |last=Brenta |first=Gabriela |date=2011-09-19 |title=Why Can Insulin Resistance Be a Natural Consequence of Thyroid Dysfunction? |journal=Journal of Thyroid Research |language=en |volume=2011 |pages=e152850 |doi=10.4061/2011/152850 |issn=2090-8067 |pmc=3175696 |pmid=21941681 |doi-access=free}}</ref><ref name=":13" /><ref name=":17">{{Citation |last1=Fariduddin |first1=Maria M. |title=Hypothyroid Myopathy |date=2023 |url=http://www.ncbi.nlm.nih.gov/books/NBK519513/ |work=StatPearls |access-date=2023-05-24 |place=Treasure Island (FL) |publisher=StatPearls Publishing |pmid=30137798 |last2=Bansal |first2=Nidhi}}</ref> Prolonged hypo- and hyperthyroid myopathy leads to atrophy of type II (fast-twitch/glycolytic) [[Skeletal muscle#Fiber types|muscle fibres]], and a predominance of type I (slow-twitch/oxidative) muscle fibres.<ref name=":16" /><ref name=":13" /><ref name=":14" /> Muscle biopsy shows abnormal muscle glycogen: high accumulation in hypothyroidism and low accumulation in hyperthyroidism.<ref name=":17" /><ref name=":15" /><ref name=":16" /> Hypothyroid myopathy includes [[Kocher–Debre–Semelaigne syndrome|Kocher-Debre-Semelaigne syndrome]] (childhood-onset), [[Hoffmann syndrome|Hoffman syndrome]] (adult-onset), myasthenic syndrome, and atrophic form.<ref name=":17" /> In patients with increased growth hormone, muscle biopsy includes, among other features, excess glycogen deposition.<ref>{{Citation |last=Orrell |first=Richard W. |title=Myopathies |date=2007-01-01 |volume=86 |pages=343–355 |access-date=2023-05-24 |series=Handbook of Clinical Neurology |chapter=Endocrine myopathies |chapter-url=https://www.sciencedirect.com/science/article/pii/S0072975207860179 |publisher=Elsevier |language=en |doi=10.1016/S0072-9752(07)86017-9 |isbn=9780444518996 |pmid=18809009}}</ref> EPG5-related [[Vici syndrome]] is a multisystem disorder, a congenital disorder of [[autophagy]], with muscle biopsy showing excess glycogen accumulation, among other myopathic features.<ref>{{Cite journal |last1=Byrne |first1=Susan |last2=Dionisi-Vici |first2=Carlo |last3=Smith |first3=Luke |last4=Gautel |first4=Mathias |last5=Jungbluth |first5=Heinz |date=2016-02-29 |title=Vici syndrome: a review |journal=Orphanet Journal of Rare Diseases |volume=11 |pages=21 |doi=10.1186/s13023-016-0399-x |doi-access=free |issn=1750-1172 |pmc=4772338 |pmid=26927810}}</ref> It is interesting to note, in comparison to hypothyroid myopathy, that McArdle disease ([[Glycogen storage disease type V|GSD-V]]), which is by far the most commonly diagnosed of the muscle GSDs and therefore the most studied,<ref name=":19" /><ref name=":5" /><ref name=":6" /> has as its second highest [[comorbidity]] endocrine disease (chiefly hypothyroidism)<ref>{{Cite journal |last1=Scalco |first1=Renata S. |last2=Lucia |first2=Alejandro |last3=Santalla |first3=Alfredo |last4=Martinuzzi |first4=Andrea |last5=Vavla |first5=Marinela |last6=Reni |first6=Gianluigi |last7=Toscano |first7=Antonio |last8=Musumeci |first8=Olimpia |last9=Voermans |first9=Nicol C. |last10=Kouwenberg |first10=Carlyn V. |last11=Laforêt |first11=Pascal |last12=San-Millán |first12=Beatriz |last13=Vieitez |first13=Irene |last14=Siciliano |first14=Gabriele |last15=Kühnle |first15=Enrico |date=2020-11-24 |title=Data from the European registry for patients with McArdle disease and other muscle glycogenoses (EUROMAC) |journal=Orphanet Journal of Rare Diseases |volume=15 |issue=1 |pages=330 |doi=10.1186/s13023-020-01562-x |issn=1750-1172 |pmc=7687836 |pmid=33234167 |doi-access=free}}</ref><ref name=":5" /> and that some patients with McArdle disease also have hypertrophy of the calf muscles.<ref name=":11" /> Late-onset Pompe disease ([[Glycogen storage disease type II|GSD-II]]) also has calf hypertrophy and hypothyroidism as comorbidities.<ref name=":18" /><ref>{{Cite journal |last1=Schneider |first1=Joseph |last2=Burmeister |first2=Lynn A. |last3=Rudser |first3=Kyle |last4=Whitley |first4=Chester B. |last5=Jarnes Utz |first5=Jeanine |date=September 2016 |title=Hypothyroidism in late-onset Pompe disease |journal=Molecular Genetics and Metabolism Reports |volume=8 |pages=24–27 |doi=10.1016/j.ymgmr.2016.06.002 |issn=2214-4269 |pmc=4932620 |pmid=27408821}}</ref><ref>{{Cite journal |last1=Fatehi |first1=Farzad |last2=Ashrafi |first2=Mahmoud Reza |last3=Babaee |first3=Marzieh |last4=Ansari |first4=Behnaz |last5=Beiraghi Toosi |first5=Mehran |last6=Boostani |first6=Reza |last7=Eshraghi |first7=Peyman |last8=Fakharian |first8=Atefeh |last9=Hadipour |first9=Zahra |last10=Haghi Ashtiani |first10=Bahram |last11=Moravej |first11=Hossein |last12=Nilipour |first12=Yalda |last13=Sarraf |first13=Payam |last14=Sayadpour Zanjani |first14=Keyhan |last15=Nafissi |first15=Shahriar |date=2021 |title=Recommendations for Infantile-Onset and Late-Onset Pompe Disease: An Iranian Consensus |journal=Frontiers in Neurology |volume=12 |page=739931 |doi=10.3389/fneur.2021.739931 |issn=1664-2295 |pmc=8490649 |pmid=34621239 |doi-access=free}}</ref> Poor diet and [[malabsorption]] diseases (such as celiac disease) may lead to malnutrition of essential vitamins necessary for glycogen metabolism within the muscle cells. Malnutrition typically presents with systemic symptoms, but in rare instances can be limited to myopathy.<ref>{{Cite journal |last1=Rasheed |first1=Khalid |last2=Sethi |first2=Pooja |last3=Bixby |first3=Eric |date=May 2013 |title=Severe vitamin d deficiency induced myopathy associated with rhabydomyolysis |journal=North American Journal of Medical Sciences |volume=5 |issue=5 |pages=334–336 |doi=10.4103/1947-2714.112491 |doi-broken-date=1 November 2024 |issn=2250-1541 |pmc=3690793 |pmid=23814767 |doi-access=free}}</ref> [[Vitamin D deficiency]] myopathy (also known as [[Osteomalacia|osteomalic]] myopathy due to the interplay between vitamin D and calcium) results in muscle weakness, predominantly of the proximal muscles; with muscle biopsy showing abnormal glycogen accumulation, atrophy of type II (fast-twitch/glycolytic) muscle fibres, and diminished calcium uptake by the sarcoplasmic reticulum (needed for muscle contraction).<ref name=":20">{{Cite journal |last1=Polly |first1=Patsie |last2=Tan |first2=Timothy C. |date=2014 |title=The role of vitamin D in skeletal and cardiac muscle function |journal=Frontiers in Physiology |volume=5 |pages=145 |doi=10.3389/fphys.2014.00145 |issn=1664-042X |pmc=3995052 |pmid=24782788 |doi-access=free}}</ref><ref>{{Cite journal |last1=Yoshikawa |first1=S. |last2=Nakamura |first2=T. |last3=Tanabe |first3=H. |last4=Imamura |first4=T. |date=June 1979 |title=Osteomalacic myopathy |journal=Endocrinologia Japonica |volume=26 |issue=Suppl |pages=65–72 |doi=10.1507/endocrj1954.26.supplement_65 |issn=0013-7219 |pmid=467350 |doi-access=free}}</ref><ref>{{Cite journal |last1=Das |first1=Anamica |last2=Gopinath |first2=Suchitra D. |last3=Arimbasseri |first3=Gopalakrishnan Aneeshkumar |date=February 2022 |title=Systemic ablation of vitamin D receptor leads to skeletal muscle glycogen storage disorder in mice |journal=Journal of Cachexia, Sarcopenia and Muscle |volume=13 |issue=1 |pages=467–480 |doi=10.1002/jcsm.12841 |issn=2190-6009 |pmc=8818613 |pmid=34877816}}</ref> Although Vitamin D deficiency myopathy typically includes muscle atrophy,<ref name=":20" /> rarely calf muscle hypertrophy has been reported.<ref>{{Cite journal |last1=Hassan |first1=Ijas |last2=Bhanudeep |first2=Singanamalla |last3=Madaan |first3=Priyanka |last4=Chhajed |first4=Monika |last5=Saini |first5=Lokesh |date=2021 |title=Bilateral Calf Hypertrophy and Isolated Motor Delay: Think Beyond Muscular Dystrophy |journal=Journal of Pediatric Neurosciences |volume=16 |issue=2 |pages=173–174 |doi=10.4103/jpn.JPN_171_20 |issn=1817-1745 |pmc=8706592 |pmid=35018192 |doi-access=free}}</ref><ref>{{Cite journal |last1=Reimers |first1=C. D. |last2=Schlotter |first2=B. |last3=Eicke |first3=B. M. |last4=Witt |first4=T. N. |date=November 1996 |title=Calf enlargement in neuromuscular diseases: a quantitative ultrasound study in 350 patients and review of the literature |url=https://pubmed.ncbi.nlm.nih.gov/8981297/ |journal=Journal of the Neurological Sciences |volume=143 |issue=1–2 |pages=46–56 |doi=10.1016/s0022-510x(96)00037-8 |issn=0022-510X |pmid=8981297 |s2cid=25971689}}</ref> Exercise-induced, electrically silent, muscle cramping and stiffness (transient muscle contractures or "pseudomyotonia") are seen not only in GSD types V, VII, IXd, X, XI, XII, and XIII, but also in [[Brody myopathy|Brody disease]], [[Rippling muscle disease]] types 1 and 2, and [[Caveolin 3|CAV3]]-related hyperCKemia (Elevated serum creatine phosphokinase).<ref name=":21">{{Cite web |title=Exercise-induced muscle cramps (Concept Id: C1855578) - MedGen - NCBI |url=https://www.ncbi.nlm.nih.gov/medgen/383715#:~:text=Disease%20or%20Syndrome-,Myopathy%20with%20myalgia,%20increased%20serum%20creatine%20kinase,%20and%20with%20or,adult)%20onset%20has%20also%20been |access-date=2023-12-28 |website=www.ncbi.nlm.nih.gov |language=en}}</ref> Unlike the other myopathies, in Brody disease the muscle cramping is painless.<ref name=":22">{{Cite web |title=BRODY DISEASE; BROD |url=https://www.omim.org/entry/601003 |access-date=2023-12-28 |website=www.omim.org |language=en-us}}</ref><ref>{{Cite journal |last1=Molenaar |first1=Joery P. |last2=Verhoeven |first2=Jamie I. |last3=Rodenburg |first3=Richard J. |last4=Kamsteeg |first4=Erik J. |last5=Erasmus |first5=Corrie E. |last6=Vicart |first6=Savine |last7=Behin |first7=Anthony |last8=Bassez |first8=Guillaume |last9=Magot |first9=Armelle |last10=Péréon |first10=Yann |last11=Brandom |first11=Barbara W. |last12=Guglielmi |first12=Valeria |last13=Vattemi |first13=Gaetano |last14=Chevessier |first14=Frédéric |last15=Mathieu |first15=Jean |date=2020-02-01 |title=Clinical, morphological and genetic characterization of Brody disease: an international study of 40 patients |journal=Brain: A Journal of Neurology |volume=143 |issue=2 |pages=452–466 |doi=10.1093/brain/awz410 |issn=1460-2156 |pmc=7009512 |pmid=32040565}}</ref> Like GSD types II, III, and V, a pseudoathletic appearance of muscle hypertrophy is also seen in some with Brody disease and Rippling muscle disease.<ref name=":22" /><ref>{{Cite web |title=RIPPLING MUSCLE DISEASE 1; RMD1 |url=https://www.omim.org/entry/600332 |access-date=2023-12-28 |website=www.omim.org |language=en-us}}</ref><ref>{{Cite web |title=RIPPLING MUSCLE DISEASE 2; RMD2 |url=https://www.omim.org/entry/606072 |access-date=2023-12-28 |website=www.omim.org |language=en-us}}</ref> Erythrocyte lactate transporter defect (formerly ''Lactate transporter defect, myopathy due to'') also includes exercise-induced, electrically silent, painful muscle cramping and transient contractures; as well as exercise-induced muscle fatigue.<ref name=":21" /><ref name=":23">{{Cite web |title=ERYTHROCYTE LACTATE TRANSPORTER DEFECT |url=https://www.omim.org/entry/245340 |access-date=2023-12-28 |website=www.omim.org |language=en-us}}</ref> EMG and muscle biopsy is normal however, as the defect is not in the muscle but in the red blood cells that should clear lactate buildup from exercising muscles.<ref name=":23" /> Although most muscular dystrophies have fixed muscle weakness rather than exercise-induced muscle fatigue and/or cramping, there are a few exceptions. Limb–girdle muscular dystrophy autosomal recessive 23 (LGMD R23) has calf hypertrophy and exercise-induced cramping.<ref>{{Cite web |title=MUSCULAR DYSTROPHY, LIMB-GIRDLE, AUTOSOMAL RECESSIVE 23; LGMDR23 |url=https://www.omim.org/entry/618138 |access-date=2023-12-28 |website=www.omim.org |language=en-us}}</ref> Myofibrillar myopathy 10 (MFM10) has exercise-induced muscle fatigue, cramping and stiffness, with hypertrophic neck and shoulder girdle muscles.<ref>{{Cite web |title=MYOFIBRILLAR MYOPATHY 10; MFM10 |url=https://www.omim.org/entry/619040 |access-date=2023-12-28 |website=www.omim.org |language=en-us}}</ref> LGMD R28 has calf hypertrophy and exercise-induced muscle fatigue and pain.<ref>{{Cite web |title=MUSCULAR DYSTROPHY, LIMB-GIRDLE, AUTOSOMAL RECESSIVE 28; LGMDR28 |url=https://www.omim.org/entry/620375 |access-date=2023-12-28 |website=www.omim.org |language=en-us}}</ref> LGMD R8 has calf pseudohypertrophy and exercise-induced weakness (fatigue) and pain.<ref>{{Cite web |title=MUSCULAR DYSTROPHY, LIMB-GIRDLE, AUTOSOMAL RECESSIVE 8; LGMDR8 |url=https://www.omim.org/entry/254110 |access-date=2023-12-28 |website=www.omim.org |language=en-us}}</ref> LGMD R15 (a.k.a MDDGC3) has muscle hypertrophy, proximal muscle weakness, and muscle fatigue.<ref>{{Cite web |title=MUSCULAR DYSTROPHY-DYSTROGLYCANOPATHY (LIMB-GIRDLE), TYPE C, 3; MDDGC3 |url=https://www.omim.org/entry/613157 |access-date=2023-12-28 |website=www.omim.org |language=en-us}}</ref> DMD-related myopathies of [[Duchenne muscular dystrophy|Duchenne]] and [[Becker muscular dystrophy]] are known for fixed muscle weakness and pseudohypertrophic calf muscles, but they also have secondary [[Mitochondrial myopathy|muscular mitochondrial impairment]] causing low ATP production; as well as decreasing type II (fast-twitch/glycolytic) muscle fibres, producing a predominance of type I (slow-twitch/oxidative) muscle fibres.<ref>{{Cite journal |last=Heydemann |first=Ahlke |date=2018-06-20 |title=Skeletal Muscle Metabolism in Duchenne and Becker Muscular Dystrophy-Implications for Therapies |journal=Nutrients |volume=10 |issue=6 |pages=796 |doi=10.3390/nu10060796 |doi-access=free |issn=2072-6643 |pmc=6024668 |pmid=29925809}}</ref> DMD-related childhood-onset milder phenotypes present with exercise-induced muscle cramping, stiffness, pain, fatigue, and elevated CK.<ref>{{Cite journal |last1=Veerapandiyan |first1=Aravindhan |last2=Shashi |first2=Vandana |last3=Jiang |first3=Yong-Hui |last4=Gallentine |first4=William Brian |last5=Schoch |first5=Kelly |last6=Smith |first6=Edward Clinton |date=December 2010 |title=Pseudometabolic presentation of dystrophinopathy due to a missense mutation |journal=Muscle & Nerve |volume=42 |issue=6 |pages=975–979 |doi=10.1002/mus.21823 |issn=1097-4598 |pmc=5506871 |pmid=21104870}}</ref> Becker muscular dystrophy has adult-onset exercise-induced muscle cramping, pain, and elevated CK.<ref>{{Cite web |title=MUSCULAR DYSTROPHY, BECKER TYPE; BMD |url=https://www.omim.org/entry/300376 |access-date=2023-12-29 |website=www.omim.org |language=en-us}}</ref> [[Tubular aggregate myopathy]] (TAM) types 1 and 2 has exercise-induced muscle pain, fatigue, stiffness, with proximal muscle weakness and calf muscle pseudohypertrophy. TAM1 has cramping at rest, while TAM2 has cramping during exercise.<ref>{{Cite web |title=Tubular aggregate myopathy - About the Disease - Genetic and Rare Diseases Information Center |url=https://rarediseases.info.nih.gov/diseases/3884/tubular-aggregate-myopathy |access-date=2023-11-11 |website=rarediseases.info.nih.gov |language=en}}</ref><ref name=":24">{{Cite journal |last1=Morin |first1=Gilles |last2=Biancalana |first2=Valérie |last3=Echaniz-Laguna |first3=Andoni |last4=Noury |first4=Jean-Baptiste |last5=Lornage |first5=Xavière |last6=Moggio |first6=Maurizio |last7=Ripolone |first7=Michela |last8=Violano |first8=Raffaella |last9=Marcorelles |first9=Pascale |last10=Maréchal |first10=Denis |last11=Renaud |first11=Florence |last12=Maurage |first12=Claude-Alain |last13=Tard |first13=Céline |last14=Cuisset |first14=Jean-Marie |last15=Laporte |first15=Jocelyn |date=January 2020 |title=Tubular aggregate myopathy and Stormorken syndrome: Mutation spectrum and genotype/phenotype correlation |journal=Human Mutation |volume=41 |issue=1 |pages=17–37 |doi=10.1002/humu.23899 |issn=1098-1004 |pmid=31448844|doi-access=free }}</ref><ref>{{Cite web |title=MYOPATHY, TUBULAR AGGREGATE, 1; TAM1 |url=https://www.omim.org/entry/160565 |access-date=2023-11-11 |website=www.omim.org |language=en-us}}</ref><ref>{{Cite web |title=MYOPATHY, TUBULAR AGGREGATE, 2; TAM2 |url=https://www.omim.org/entry/615883 |access-date=2023-11-11 |website=www.omim.org |language=en-us}}</ref> Stormorken syndrome includes the symptoms of TAM, but is a more severe presentation including short stature and other abnormalities.<ref name=":24" /> [[Satoyoshi syndrome]] has exercise-induced painful muscle cramps, muscle hypertrophy, and short stature.<ref>{{Cite web |title=SATOYOSHI SYNDROME |url=https://www.omim.org/entry/600705 |access-date=2023-12-28 |website=www.omim.org |language=en-us}}</ref> Dimethylglycine dehydrogenase deficiency has muscle fatigue, elevated CK, and fishy body odour.<ref>{{Cite web |title=DIMETHYLGLYCINE DEHYDROGENASE DEFICIENCY; DMGDHD |url=https://www.omim.org/entry/605850 |access-date=2023-12-28 |website=www.omim.org |language=en-us}}</ref> Myopathy with myalgia, increased serum creatine kinase, with or without episodic rhabdomyolysis (MMCKR) has exercise-induced muscle cramps, pain, and fatigue; with some exhibiting proximal muscle weakness.<ref>{{Cite web |title=MYOPATHY WITH MYALGIA, INCREASED SERUM CREATINE KINASE, AND WITH OR WITHOUT EPISODIC RHABDOMYOLYSIS; MMCKR |url=https://www.omim.org/entry/620138 |access-date=2023-12-28 |website=www.omim.org |language=en-us}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Glycogen storage disease
(section)
Add topic