Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Genotype–phenotype distinction
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Importance to evolutionary biology== According to [[Richard Lewontin|Lewontin]],<ref>{{cite book|last1=Lewontin|first1=Richard C.|title=The genetic basis of evolutionary change|url=https://archive.org/details/geneticbasisofev00lewo|url-access=registration|date=1974|publisher=Columbia University Press|location=New York|isbn=978-0231083188|edition=[4th printing.]}}</ref> the theoretical task for population genetics is a process in two spaces: a "genotypic space" and a "phenotypic space". The challenge of a ''complete'' theory of population genetics is to provide a set of laws that predictably map a population of [[genotype]]s (''G''<sub>1</sub>) to a [[phenotype]] space (''P''<sub>1</sub>), where [[natural selection|selection]] takes place, and another set of laws that map the resulting population (''P''<sub>2</sub>) back to genotype space (''G''<sub>2</sub>) where [[Mendelism|Mendelian]] genetics can predict the next generation of genotypes, thus completing the cycle. Even if non-Mendelian aspects of [[molecular genetics]] are ignored, this is a gargantuan task. Visualizing the transformation schematically: :<math>G_1 \; \stackrel{T_1}{\rightarrow} \; P_1 \; \stackrel{T_2}{\rightarrow} \; P_2 \; \stackrel{T_3}{\rightarrow} \; G_2 \; \stackrel{T_4}{\rightarrow} \; G_1' \; \rightarrow \cdots</math> (adapted from Lewontin 1974, p. 12). ''T''<sub>1</sub> represents the genetic and [[epigenetic]] laws, the aspects of functional biology, or [[developmental biology|development]], that transform a genotype into phenotype. This is the "[[genotype–phenotype map]]". ''T''<sub>2</sub> is the transformation due to natural selection, ''T''<sub>3</sub> are epigenetic relations that predict genotypes based on the selected phenotypes and finally ''T''<sub>4</sub> the rules of Mendelian genetics. In practice, there are two bodies of evolutionary theory that exist in parallel, traditional population genetics operating in the genotype space and the [[biometry|biometric]] theory used in [[plant breeding|plant]] and [[animal breeding]], operating in phenotype space. The missing part is the mapping between the genotype and phenotype space. This leads to a "sleight of hand" (as Lewontin terms it) whereby variables in the equations of one domain, are considered parameters or ''constants'', where, in a full-treatment, they would be transformed themselves by the evolutionary process and are ''[[function (mathematics)|function]]s'' of the state variables in the other domain. The "sleight of hand" is assuming that the mapping is known. Proceeding as if it is understood is enough to analyze many cases of interest. For example, if the phenotype is almost one-to-one with genotype ([[sickle-cell disease]]) or the time-scale is sufficiently short, the "constants" can be treated as such; however, there are also many situations where that assumption does not hold.{{cn|date=February 2025}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Genotype–phenotype distinction
(section)
Add topic