Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Gaussian elimination
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Example of the algorithm === Suppose the goal is to find and describe the set of solutions to the following system of linear equations: <math display="block"> \begin{alignat}{4} 2x &{}+{}& y &{}-{}& z &{}={}& 8 & \qquad (L_1) \\ -3x &{}-{}& y &{}+{}& 2z &{}={}& -11 & \qquad (L_2) \\ -2x &{}+{}& y &{}+{}& 2z &{}={}& -3 & \qquad (L_3) \end{alignat} </math> The table below is the row reduction process applied simultaneously to the system of equations and its associated [[augmented matrix]]. In practice, one does not usually deal with the systems in terms of equations, but instead makes use of the augmented matrix, which is more suitable for computer manipulations. The row reduction procedure may be summarized as follows: eliminate {{mvar|x}} from all equations below {{math|''L''<sub>1</sub>}}, and then eliminate {{mvar|y}} from all equations below {{math|''L''<sub>2</sub>}}. This will put the system into [[triangular form]]. Then, using back-substitution, each unknown can be solved for. : {| class="wikitable" |- ! System of equations !! Row operations !! Augmented matrix |- align="center" | <math> \begin{alignat}{4} 2x &{}+{}& y &{}-{}& z &{}={}& 8 & \\ -3x &{}-{}& y &{}+{}& 2z &{}={}& -11 & \\ -2x &{}+{}& y &{}+{}& 2z &{}={}& -3 & \end{alignat} </math> | | <math> \left[\begin{array}{rrr|r} 2 & 1 & -1 & 8 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3 \end{array}\right] </math> |- align="center" | <math> \begin{alignat}{4} 2x &{}+{}& y &{}-{}& z &{}={}& 8 & \\ & & \tfrac12 y &{}+{}& \tfrac12 z &{}={}& 1 & \\ & & 2y &{}+{}& z &{}={}& 5 & \end{alignat} </math> | <math> \begin{align} L_2 + \tfrac32 L_1 &\to L_2 \\ L_3 + L_1 &\to L_3 \end{align} </math> | <math> \left[\begin{array}{rrr|r} 2 & 1 & -1 & 8 \\ 0 & \frac12 & \frac12 & 1 \\ 0 & 2 & 1 & 5 \end{array}\right] </math> |- align="center" | <math> \begin{alignat}{4} 2x &{}+{}& y &{}-{}& z &{}={}& 8 & \\ & & \tfrac12 y &{}+{}& \tfrac12 z &{}={}& 1 & \\ & & & & -z &{}={}& 1 & \end{alignat} </math> | <math> L_3 + -4 L_2 \to L_3</math> | <math> \left[\begin{array}{rrr|r} 2 & 1 & -1 & 8 \\ 0 & \frac12 & \frac12 & 1 \\ 0 & 0 & -1 & 1 \end{array}\right] </math> |- |colspan=3 align="center"| The matrix is now in echelon form (also called triangular form) |- align="center" | <math> \begin{alignat}{4} 2x &{}+{}& y & & &{}={} 7 & \\ & & \tfrac12 y & & &{}={} \tfrac32 & \\ & & &{}-{}& z &{}={} 1 & \end{alignat} </math> | <math> \begin{align} L_1 - L_3 &\to L_1\\ L_2 + \tfrac12 L_3 &\to L_2 \end{align} </math> | <math> \left[\begin{array}{rrr|r} 2 & 1 & 0 & 7 \\ 0 & \frac12 & 0 & \frac32 \\ 0 & 0 & -1 & 1 \end{array}\right] </math> |- align="center" | <math> \begin{alignat}{4} 2x &{}+{}& y &\quad& &{}={}& 7 & \\ & & y &\quad& &{}={}& 3 & \\ & & &\quad& z &{}={}& -1 & \end{alignat} </math> | <math> \begin{align} 2 L_2 &\to L_2 \\ -L_3 &\to L_3 \end{align} </math> | <math> \left[\begin{array}{rrr|r} 2 & 1 & 0 & 7 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{array}\right] </math> |- align="center" | <math> \begin{alignat}{4} x &\quad& &\quad& &{}={}& 2 & \\ &\quad& y &\quad& &{}={}& 3 & \\ &\quad& &\quad& z &{}={}& -1 & \end{alignat} </math> | <math> \begin{align} L_1 - L_2 &\to L_1 \\ \tfrac12 L_1 &\to L_1 \end{align} </math> | <math> \left[\begin{array}{rrr|r} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{array}\right] </math> |} The second column describes which row operations have just been performed. So for the first step, the {{mvar|x}} is eliminated from {{math|''L''<sub>2</sub>}} by adding {{math|{{sfrac|3|2}}''L''<sub>1</sub>}} to {{math|''L''<sub>2</sub>}}. Next, {{mvar|x}} is eliminated from {{math|''L''<sub>3</sub>}} by adding {{math|''L''<sub>1</sub>}} to {{math|''L''<sub>3</sub>}}. These row operations are labelled in the table as <math display="block">\begin{align} L_2 + \tfrac32 L_1 &\to L_2, \\ L_3 + L_1 &\to L_3. \end{align}</math> Once {{mvar|y}} is also eliminated from the third row, the result is a system of linear equations in triangular form, and so the first part of the algorithm is complete. From a computational point of view, it is faster to solve the variables in reverse order, a process known as back-substitution. One sees the solution is {{math|1=''z'' = −1}}, {{math|1=''y'' = 3}}, and {{math|1=''x'' = 2}}. So there is a unique solution to the original system of equations. Instead of stopping once the matrix is in echelon form, one could continue until the matrix is in ''reduced'' row echelon form, as it is done in the table. The process of row reducing until the matrix is reduced is sometimes referred to as Gauss–Jordan elimination, to distinguish it from stopping after reaching echelon form.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Gaussian elimination
(section)
Add topic