Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Formic acid
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Chemical reactions== ===Decomposition=== Formic acid readily decomposes by dehydration in the presence of concentrated [[sulfuric acid]] to form [[carbon monoxide]] and water: :HCO<sub>2</sub>H → H<sub>2</sub>O + CO Treatment of formic acid with sulfuric acid is a convenient laboratory source of CO.<ref name="koch">{{cite journal |doi=10.15227/orgsyn.044.0001 |title=1-Adamantanecarboxylic Acid |journal=Organic Syntheses |date=1964 |volume=44 |page=1|first1=H.|last1=Koch|first2=W.|last2=Haaf }}</ref><ref name="coleman">{{OrgSynth|title=''p''-Tolualdehyde|author=Coleman, G. H.|author2=Craig, David|volume=12|pages=80|year=1932|doi=10.15227/orgsyn.012.0080}}</ref> In the presence of [[platinum]], it decomposes with a release of [[hydrogen]] and [[carbon dioxide]]. :HCO<sub>2</sub>H → H<sub>2</sub> + CO<sub>2</sub> Soluble [[ruthenium]] catalysts are also effective for producing carbon monoxide-free hydrogen.<ref name="Fellay2008">{{cite journal |doi=10.1002/anie.200800320 |pmid=18393267 |title=A Viable Hydrogen-Storage System Based on Selective Formic Acid Decomposition with a Ruthenium Catalyst |journal=Angewandte Chemie International Edition |volume=47 |issue=21 |year=2008 |last1=Fellay |first1=Céline |last2=Dyson |first2=Paul J. |last3=Laurenczy |first3=Gábor |pages=3966–8}}</ref> ===Reactant=== Formic acid shares most of the chemical properties of other [[carboxylic acid]]s. Because of its high acidity, solutions in alcohols form esters spontaneously; in [[Fischer esterification]]s of formic acid, it self-catalyzes the reaction and no additional acid catalyst is needed.<ref>{{cite book |last1=Furniss |first1=Brian S. |last2=Hannaford |first2=Antony, J. |last3=Smith |first3=Peter W. G. |last4=Tatchell |first4=Austin S. |edition=5th |year=1989 |title=Vogel's Textbook of Practical Organic Chemistry |publisher=Longman Scientific & Technical |page=696, 701 |isbn=978-0582462366}}</ref> Formic acid shares some of the [[redox|reducing]] properties of [[aldehyde]]s, reducing solutions of metal oxides to their respective metal.<ref>{{Cite book|last1=Ozawa|first1=Naoto|last2=Okubo|first2=Tatsuo|last3=Matsuda|first3=Jun|last4=Sakai|first4=Tatsuo|title=2016 11th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT) |chapter=Observation and analysis of metal oxide reduction by formic acid for soldering |date=October 2016|chapter-url=https://ieeexplore.ieee.org/document/7799990|pages=148–151|doi=10.1109/IMPACT.2016.7799990|isbn=978-1-5090-4769-7|s2cid=32545113}}</ref> Formic acid is a source for a [[formyl]] group for example in the [[formylation]] of [[N-Methylaniline|''N''-methylaniline]] to ''N''-methylformanilide in [[toluene]].<ref>{{OrgSynth | title = ''N''-Methylformanilide | collvol = 3 | collvolpages = 590 | year = 1955 | prep = cv3p0590 | authorlink=Louis Fieser |author=L. F. Fieser |author2=J. E. Jones}}</ref> In [[organic synthesis|synthetic organic chemistry]], formic acid is often used as a source of [[hydride]] ion, as in the [[Eschweiler–Clarke reaction]]: [[Image:Eschweiler-Clarke Reaction.svg|center|300px|The Eschweiler–Clark reaction]] It is used as a source of hydrogen in [[transfer hydrogenation]], as in the [[Leuckart reaction]] to make [[amine]]s, and (in aqueous solution or in its [[azeotrope]] with [[triethylamine]]) for hydrogenation of [[ketone]]s.<ref name="Zhou2012">{{cite journal | last=Zhou | first=Xiaowei | display-authors=etal | title=Varying the ratio of formic acid to triethylamine impacts on asymmetric transfer hydrogenation of ketones | journal=Journal of Molecular Catalysis A: Chemical | volume=357 | year=2012 | issn=1381-1169 | doi=10.1016/j.molcata.2012.02.002 | pages=133–140}}</ref> ===Addition to alkenes=== Formic acid is unique among the carboxylic acids in its ability to participate in addition reactions with [[alkene]]s. Formic acids and alkenes readily react to form formate [[ester]]s. In the presence of certain acids, including [[sulfuric acid|sulfuric]] and [[hydrofluoric acid]]s, however, a variant of the [[Koch reaction]] occurs instead, and formic acid adds to the alkene to produce a larger carboxylic acid.<ref>{{cite journal |doi=10.1002/cber.19660990410 |title=Die Synthese sekundärer Carbonsäuren nach der Ameisensäure-Methode |journal=Chemische Berichte |volume=99 |issue=4 |pages=1149–52 |year=1966 |last1=Haaf |first1=Wolfgang }}</ref> ===Formic acid anhydride=== An unstable [[formic anhydride]], H(C=O)−O−(C=O)H, can be obtained by dehydration of formic acid with [[N,N'-Dicyclohexylcarbodiimide|''N'',''{{prime|N}}''-dicyclohexylcarbodiimide]] in ether at low temperature.<ref name=gwu>{{cite journal |doi=10.1021/j100021a022 |title=Formic Anhydride in the Gas Phase, Studied by Electron Diffraction and Microwave and Infrared Spectroscopy, Supplemented with Ab-Initio Calculations of Geometries and Force Fields |journal=The Journal of Physical Chemistry |volume=99 |issue=21 |pages=8589–98 |year=1995 |last1=Wu |first1=G |last2=Shlykov |first2=S |last3=Van Alseny |first3=F. S |last4=Geise |first4=H. J |last5=Sluyts |first5=E |last6=Van Der Veken |first6=B. J }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Formic acid
(section)
Add topic