Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fluid dynamics
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Compressible versus incompressible flow=== All fluids are [[compressibility|compressible]] to an extent; that is, changes in pressure or temperature cause changes in density. However, in many situations the changes in pressure and temperature are sufficiently small that the changes in density are negligible. In this case the flow can be modelled as an [[incompressible flow]]. Otherwise the more general [[compressible flow]] equations must be used. Mathematically, incompressibility is expressed by saying that the density {{mvar|Ο}} of a [[fluid parcel]] does not change as it moves in the flow field, that is, <math display="block">\frac{\mathrm{D} \rho}{\mathrm{D}t} = 0 \, ,</math> where {{math|{{sfrac|D|D''t''}}}} is the [[material derivative]], which is the sum of [[time derivative|local]] and [[convective derivative]]s. This additional constraint simplifies the governing equations, especially in the case when the fluid has a uniform density. For flow of gases, to determine whether to use compressible or incompressible fluid dynamics, the [[Mach number]] of the flow is evaluated. As a rough guide, compressible effects can be ignored at Mach numbers below approximately 0.3. For liquids, whether the incompressible assumption is valid depends on the fluid properties (specifically the critical pressure and temperature of the fluid) and the flow conditions (how close to the critical pressure the actual flow pressure becomes). [[acoustics|Acoustic]] problems always require allowing compressibility, since [[sound waves]] are compression waves involving changes in pressure and density of the medium through which they propagate.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fluid dynamics
(section)
Add topic