Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Experiment
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Controlled experiments=== {{Main|Scientific control|Design of experiments}} {{citations needed|date=March 2019}} A controlled experiment often compares the results obtained from experimental samples against ''control'' samples, which are practically identical to the experimental sample except for the one aspect whose effect is being tested (the [[dependent and independent variables|independent variable]]). A good example would be a drug trial. The sample or group receiving the drug would be the experimental group ([[treatment group]]); and the one receiving the [[placebo]] or regular treatment would be the [[control group|control]] one. In many laboratory experiments it is good practice to have several [[Replicate (statistics)|replicate]] samples for the test being performed and have both a [[Scientific control#Positive|positive control]] and a [[Scientific control#Negative|negative control]]. The results from replicate samples can often be averaged, or if one of the replicates is obviously inconsistent with the results from the other samples, it can be discarded as being the result of an experimental error (some step of the test procedure may have been mistakenly omitted for that sample). Most often, tests are done in duplicate or triplicate. A positive control is a procedure similar to the actual experimental test but is known from previous experience to give a positive result. A negative control is known to give a negative result. The positive control confirms that the basic conditions of the experiment were able to produce a positive result, even if none of the actual experimental samples produce a positive result. The negative control demonstrates the base-line result obtained when a test does not produce a measurable positive result. Most often the value of the negative control is treated as a "background" value to subtract from the test sample results. Sometimes the positive control takes the quadrant of a [[standard curve]]. An example that is often used in teaching laboratories is a controlled [[protein]] [[assay]]. Students might be given a fluid sample containing an unknown (to the student) amount of protein. It is their job to correctly perform a controlled experiment in which they determine the concentration of protein in the fluid sample (usually called the "unknown sample"). The teaching lab would be equipped with a protein standard [[Solution (chemistry)|solution]] with a known protein concentration. Students could make several positive control samples containing various dilutions of the protein standard. Negative control samples would contain all of the reagents for the protein assay but no protein. In this example, all samples are performed in duplicate. The assay is a [[Colorimetry (chemical method)#Colorimetric Assays|colorimetric assay]] in which a [[spectrophotometer]] can measure the amount of protein in samples by detecting a colored complex formed by the interaction of protein molecules and molecules of an added dye. In the illustration, the results for the diluted test samples can be compared to the results of the standard curve (the blue line in the illustration) to estimate the amount of protein in the unknown sample. Controlled experiments can be performed when it is difficult to exactly control all the conditions in an experiment. In this case, the experiment begins by creating two or more sample groups that are probabilistically equivalent, which means that measurements of traits should be similar among the groups and that the groups should respond in the same manner if given the same treatment. This equivalency is determined by [[statistics|statistical]] methods that take into account the amount of variation between individuals and the [[number]] of individuals in each group. In fields such as [[microbiology]] and [[chemistry]], where there is very little variation between individuals and the group size is easily in the millions, these statistical methods are often bypassed and simply splitting a solution into equal parts is assumed to produce identical sample groups. Once equivalent groups have been formed, the experimenter tries to treat them identically except for the one ''variable'' that he or she wishes to isolate. [[Human experimentation]] requires special safeguards against outside variables such as the ''[[Placebo#Mechanism of the effect|placebo effect]]''. Such experiments are generally ''[[Blind experiment|double blind]]'', meaning that neither the volunteer nor the researcher knows which individuals are in the control group or the experimental group until after all of the data have been collected. This ensures that any effects on the volunteer are due to the treatment itself and are not a response to the knowledge that he is being treated. In human experiments, researchers may give a [[research subject|subject]] (person) a [[stimulation|stimulus]] that the subject responds to. The goal of the experiment is to [[Measurement|measure]] the response to the stimulus by a [[test method]]. In the [[design of experiments]], two or more "treatments" are applied to estimate the [[Average treatment effect|difference]] between the mean [[response variable|responses]] for the treatments. For example, an experiment on baking bread could estimate the difference in the responses associated with quantitative variables, such as the ratio of water to flour, and with qualitative variables, such as strains of yeast. Experimentation is the step in the [[scientific method]] that helps people decide between two or more competing explanations—or [[hypotheses]]. These hypotheses suggest reasons to explain a phenomenon or predict the results of an action. An example might be the hypothesis that "if I release this ball, it will fall to the floor": this suggestion can then be tested by carrying out the experiment of letting go of the ball, and observing the results. Formally, a hypothesis is compared against its opposite or [[null hypothesis]] ("if I release this ball, it will not fall to the floor"). The null hypothesis is that there is no explanation or predictive power of the phenomenon through the reasoning that is being investigated. Once hypotheses are defined, an experiment can be carried out and the results analysed to confirm, refute, or define the accuracy of the hypotheses. Experiments can be also designed to [[Spillover effects in experiments|estimate spillover effects]] onto nearby untreated units.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Experiment
(section)
Add topic