Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euler's constant
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Number theory=== * An inequality for [[Euler's totient function]].<ref>{{Cite journal |last1=Rosser |first1=J. Barkley |last2=Schoenfeld |first2=Lowell |date=1962 |title=Approximate formulas for some functions of prime numbers |url=https://projecteuclid.org/journals/illinois-journal-of-mathematics/volume-6/issue-1/Approximate-formulas-for-some-functions-of-prime-numbers/10.1215/ijm/1255631807.full |journal=Illinois Journal of Mathematics |volume=6 |issue=1 |pages=64–94 |doi=10.1215/ijm/1255631807 |issn=0019-2082}}</ref> * The growth rate of the [[divisor function]].<ref>{{Cite book |last1=Hardy |first1=Godfrey H. |title=An introduction to the theory of numbers |last2=Wright |first2=Edward M. |last3=Silverman |first3=Joseph H. |date=2008 |publisher=Oxford University Press |isbn=978-0-19-921986-5 |editor-last=Heath-Brown |editor-first=D. R. |edition=6th |series=Oxford mathematics |location=Oxford New York Auckland |page=469-471}}</ref> * A formulation of the [[Riemann hypothesis]].<ref name=":2" /><ref>{{Cite journal |last=Robin |first=Guy |date=1984 |title=Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann |url=http://zakuski.utsa.edu/~jagy/Robin_1984.pdf |journal=Journal de mathématiques pures et appliquées |volume=63 |pages=187–213}}</ref> * The third of [[Mertens' theorems]].*<ref name=":9" /> * The calculation of the [[Meissel–Mertens constant]].<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Mertens Constant |url=https://mathworld.wolfram.com/MertensConstant.html |access-date=2024-11-01 |website=mathworld.wolfram.com |language=en}}</ref> * Lower bounds to specific [[Prime gap#Lower bounds|prime gaps]].<ref>{{Cite journal |last=Pintz |first=János |date=1997-04-01 |title=Very Large Gaps between Consecutive Primes |url=https://www.sciencedirect.com/science/article/pii/S0022314X97920813 |journal=Journal of Number Theory |volume=63 |issue=2 |pages=286–301 |doi=10.1006/jnth.1997.2081 |issn=0022-314X}}</ref> * An [[approximation]] of the average number of [[Divisor|divisors]] of all numbers from 1 to a given ''n.''<ref name=":6" /> * The [[Lenstra–Pomerance–Wagstaff conjecture]] on the frequency of [[Mersenne prime|Mersenne primes]].<ref>{{Cite web |title=Heuristics: Deriving the Wagstaff Mersenne Conjecture |url=https://t5k.org/mersenne/heuristic.html |access-date=2024-11-01 |website=t5k.org}}</ref> * An estimation of the efficiency of the [[euclidean algorithm]].<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Porter's Constant |url=https://mathworld.wolfram.com/PortersConstant.html |access-date=2024-11-01 |website=mathworld.wolfram.com |language=en}}</ref> * Sums involving the [[Möbius function|Möbius]] and [[Von Mangoldt function|von Mangolt function]]. * Estimate of the divisor summatory function of the [[Dirichlet hyperbola method]].<ref>{{Cite book |last=Tenenbaum |first=Gérald |url=https://books.google.de/books?id=UEk-CgAAQBAJ&lpg=PR15&dq=dirichlet%20hyperbola%20method&hl=de&pg=PA360#v=onepage&q=dirichlet%20hyperbola%20method&f=false |title=Introduction to Analytic and Probabilistic Number Theory |date=2015-07-16 |publisher=American Mathematical Soc. |isbn=978-0-8218-9854-3 |language=en}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euler's constant
(section)
Add topic