Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Equality (mathematics)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Identities === {{Main|Identity (mathematics)}} An [[Identity (mathematics)|identity]] is an equality that is true for all values of its variables in a given domain.<ref>{{Cite encyclopedia |title=Equation |encyclopedia=[[Encyclopedia of Mathematics]] |publisher=[[Springer-Verlag]] |url=http://encyclopediaofmath.org/index.php?title=Equation&oldid=32613 |last=Grishin |first=V. N. |isbn=1-4020-0609-8}}</ref><ref>{{Cite book |last=Hall |first=Henry Sinclair |url=https://archive.org/details/algebraforbeginn00hall/ |title=Algebra for Beginners |last2=Algebra for Beginners |first2=Samuel Ratcliffe |date=1895 |publisher=[[Macmillan & Co]] |location=New York |page=52}}</ref> An "equation" may sometimes mean an identity, but more often than not, it {{em|specifies}} a subset of the variable space to be the subset where the equation is true. An example is <math>\left(x + 1\right)\left(x + 1\right) = x^2 + 2 x + 1,</math> which is true for each [[real number]] <math>x.</math> There is no standard notation that distinguishes an equation from an identity, or other use of the equality relation: one has to guess an appropriate interpretation from the semantics of expressions and the context.<ref>{{cite web |last1=Marcus |first1=Solomon |author1-link=Solomon Marcus |last2=Watt |first2=Stephen M. |title=What is an Equation? |url=https://www.academia.edu/3287674 |access-date=2019-02-27 |at=Section V. ''Types of Equations and Terminology in Various Languages''}}</ref> Sometimes, but not always, an identity is written with a [[triple bar]]: <math>\left(x + 1\right)\left(x + 1\right) \equiv x^2 + 2 x + 1.</math><ref>{{Cite dictionary |editor-last1=Earl |editor-first1=Richard |dictionary=The Concise Oxford Dictionary of Mathematics |entry=Identity |editor-last2=Nicholson |editor-first2=James |date=2021 |publisher=Oxford University Press |doi=10.1093/acref/9780198845355.001.0001 |isbn=978-0-19-884535-5 |edition=6th |last1=Earl |first1=Richard |last2=Nicholson |first2=James}}</ref> This notation was introduced by [[Bernhard Riemann]] in his 1857 ''{{lang|de|Elliptische Funktionen}}'' lectures (published in 1899).{{Sfn|Cajori|1928|p=417}}<ref>{{Cite book |last=Kronecker |first=Leopold |url=https://archive.org/details/vorlesungenberz00krongoog/page/86/mode/2up?q=Biemann |title=Vorlesungen über Zahlentheorie |date=1978 |publisher=Springer |isbn=978-3-662-22798-5 |page=86 |doi=10.1007/978-3-662-24731-0 |orig-year=1901}}</ref><ref>{{Cite book |last1=Riemann |first1=Bernhard |url=https://archive.org/details/elliptischefunc00riemgoog/page/n17/mode/2up?q=%22Aus+der+letzten+Gleichung%22 |title=Elliptische functionen |last2=Stahl |first2=Hermann |date=1899 |publisher=B. G. Teubner |language=de}}</ref> Alternatively, identities may be viewed as an equality of [[Function (mathematics)|functions]], where instead of writing <math>f(a) = g(a) \text{ for all } a,</math> one may simply write <math>f = g.</math><ref>{{Cite book |last=Tao |first=Terence |date=2022 |title=Analysis I |series=Texts and Readings in Mathematics |volume=37 |publisher=Springer |location=Singapore |pages=42–43 |doi=10.1007/978-981-19-7261-4 |isbn=978-981-19-7261-4 |issn=2366-8717}}</ref>{{Sfn|Krabbe|1975|p=7}} This is called the [[extensionality]] of functions.<ref>{{Cite web |title=function extensionality in nLab |url=https://ncatlab.org/nlab/show/function+extensionality |access-date=2025-03-01 |website=ncatlab.org}}</ref>{{sfn|Lévy|2002|p=27}} In this sense, the operation-application property refers to [[Operator (mathematics)|operators]], operations on a [[function space]] (functions mapping between functions) like [[Function composition|composition]]<ref>{{Cite book |last1=Malik |first1=D. S. |url=https://archive.org/details/fundamentals-of-abstract-algebra-d.-s.-malik-j.-m.-mordeson-m.-k.-sen/page/83/mode/2up |title=Fundamentals of Abstract Algebra |last2=Mordeson |first2=J. M. |last3=Sen |first3=M. K. |publisher=[[McGraw-Hill]] |year=1997 |isbn=0-07-040035-0 |location=New York |page=83}}</ref> or the [[derivative]], commonly used in [[operational calculus]].{{Sfn|Krabbe|1975|pp=2–3}} An identity can contain an functions as "unknowns", which can be solved for similarly to a regular equation, called a [[functional equation]].<ref>{{Cite book |date=2007 |editor-last=Small |editor-first=Christopher G. |title=Functional Equations and How to Solve Them |publisher=Springer |location=New York |series=Problem Books in Mathematics |page=1 |doi=10.1007/978-0-387-48901-8 |isbn=978-0-387-34534-5 |issn=0941-3502}}</ref> A functional equation involving derivatives is called a [[differential equation]].<ref>{{Cite book |last1=Adkins |first1=William A. |last2=Davidson |first2=Mark G. |date=2012 |title=Ordinary Differential Equations |publisher=Springer |location=New York |series=Undergraduate Texts in Mathematics |pages=2–5 |doi=10.1007/978-1-4614-3618-8 |isbn=978-1-4614-3617-1 |issn=0172-6056}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Equality (mathematics)
(section)
Add topic