Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ellipsoid
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Surface area== {{see also|Area of a geodesic polygon}} The [[surface area]] of a general (triaxial) ellipsoid is<ref>F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark, editors, 2010, ''NIST Handbook of Mathematical Functions'' ([[Cambridge University Press]]), Section 19.33 {{cite web |url=http://dlmf.nist.gov/19.33 |title=Triaxial Ellipsoids |access-date=2012-01-08 }}</ref> :<math>S = 2\pi c^2 + \frac{2\pi ab}{\sin(\varphi)}\left(E(\varphi, k)\,\sin^2(\varphi) + F(\varphi, k)\,\cos^2(\varphi)\right),</math> where :<math> \cos(\varphi) = \frac{c}{a},\qquad k^2 = \frac{a^2\left(b^2 - c^2\right)}{b^2\left(a^2 - c^2\right)},\qquad a \ge b \ge c, </math> and where {{math|''F''(''Ο'', ''k'')}} and {{math|''E''(''Ο'', ''k'')}} are incomplete [[elliptic integral]]s of the first and second kind respectively.<ref>{{Cite web|url=http://dlmf.nist.gov/19.2|title = DLMF: 19.2 Definitions}}</ref> The surface area of this general ellipsoid can also be expressed in terms of {{tmath|R_G}}, one of the [[Carlson symmetric form]]s of elliptic integrals:<ref>{{Cite web |title=Surface Area of an Ellipsoid |url=https://analyticphysics.com/Mathematical%20Methods/Surface%20Area%20of%20an%20Ellipsoid.htm |access-date=2024-07-23 |website=analyticphysics.com}}</ref> :<math>S = 4\pi bc R_{G} \left( \frac{a^2}{b^2} , \frac{a^2}{c^2} , 1\right).</math> Simplifying the above formula using properties of {{math|''R''<sub>''G''</sub>}},<ref>{{Cite web |title=DLMF: Β§19.20 Special Cases β£ Symmetric Integrals β£ Chapter 19 Elliptic Integrals |url=https://dlmf.nist.gov/19.20#ii |access-date=2024-07-23 |website=dlmf.nist.gov}}</ref> this can also be expressed in terms of the volume of the ellipsoid {{math|''V''}}: :<math>S = 3VR_{G}\left(a^{-2},b^{-2},c^{-2}\right).</math> Unlike the expression with {{math|''F''(''Ο'', ''k'')}} and {{math|''E''(''Ο'', ''k'')}}, the equations in terms of {{math|''R''<sub>''G''</sub>}} do not depend on the choice of an order on {{math|''a''}}, {{math|''b''}}, and {{math|''c''}}. The surface area of an ellipsoid of revolution (or spheroid) may be expressed in terms of [[elementary function]]s: :<math> S_\text{oblate} = 2\pi a^2\left(1 + \frac{c^2}{ea^2} \operatorname{artanh}e\right), \qquad\text{where }e^2 = 1 - \frac{c^2}{a^2}\text{ and }(c < a), </math> or :<math> S_\text{oblate} = 2\pi a^2\left(1 + \frac{1 - e^2}{e} \operatorname{artanh}e\right)</math> or :<math> S_\text{oblate} = 2\pi a^2\ + \frac{\pi c^2}{e}\ln\frac{1+e}{1-e}</math> and :<math> S_\text{prolate} = 2\pi a^2\left(1 + \frac{c}{ae} \arcsin e\right) \qquad\text{where } e^2 = 1 - \frac{a^2}{c^2}\text{ and } (c > a), </math> which, as follows from basic trigonometric identities, are equivalent expressions (i.e. the formula for {{math|''S''<sub>oblate</sub>}} can be used to calculate the surface area of a prolate ellipsoid and vice versa). In both cases {{mvar|e}} may again be identified as the [[eccentricity (mathematics)|eccentricity]] of the ellipse formed by the cross section through the symmetry axis. (See [[ellipse]]). Derivations of these results may be found in standard sources, for example [[Mathworld]].<ref>{{cite web |url=http://mathworld.wolfram.com/ProlateSpheroid.html |title=Prolate Spheroid |first=Eric |last=Weisstein. |website=Wolfram MathWorld (Wolfram Research) |access-date=25 March 2018 |url-status=live |archive-url=https://web.archive.org/web/20170803085757/http://mathworld.wolfram.com/ProlateSpheroid.html |archive-date=3 August 2017}}</ref> === Approximate formula === : <math>S \approx 4\pi \sqrt[p]{\frac{a^p b^p + a^p c^p + b^p c^p}{3}}.\,\!</math> Here {{math|''p'' β 1.6075}} yields a relative error of at most 1.061%;<ref>[http://www.numericana.com/answer/ellipsoid.htm#thomsen Final answers] {{webarchive |url=https://web.archive.org/web/20110930084035/http://www.numericana.com/answer/ellipsoid.htm |date=2011-09-30}} by Gerard P. Michon (2004-05-13). See Thomsen's formulas and Cantrell's comments.</ref> a value of {{math|1=''p'' = {{sfrac|8|5}} = 1.6}} is optimal for nearly spherical ellipsoids, with a relative error of at most 1.178%. In the "flat" limit of {{mvar|c}} much smaller than {{mvar|a}} and {{mvar|b}}, the area is approximately {{math|2Ο''ab''}}, equivalent to {{math|1=''p'' = log<sub>2</sub>3 β 1.5849625007}}.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ellipsoid
(section)
Add topic