Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Distribution (mathematics)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Topology on ''C''<sup>''k''</sup>(''U'')=== We now introduce the [[seminorm]]s that will define the topology on <math>C^k(U).</math> Different authors sometimes use different families of seminorms so we list the most common families below. However, the resulting topology is the same no matter which family is used. {{block indent|em=1.5|text=Suppose <math>k \in \{0, 1, 2, \ldots, \infty\}</math> and <math>K</math> is an arbitrary compact subset of <math>U.</math> Suppose <math>i</math> is an integer such that <math>0 \leq i \leq k</math><ref group=note>Note that <math>i</math> being an integer implies <math>i \neq \infty.</math> This is sometimes expressed as <math>0 \leq i < k + 1.</math> Since <math>\infty + 1 = \infty,</math> the inequality "<math>0 \leq i < k + 1</math>" means: <math>0 \leq i < \infty</math> if <math>k = \infty,</math> while if <math>k \neq \infty</math> then it means <math>0 \leq i \leq k.</math></ref> and <math>p</math> is a multi-index with length <math>| p|\leq k.</math> For <math>K \neq \varnothing</math> and <math>f \in C^k(U),</math> define: <math display=block>\begin{alignat}{4} \text{ (1) }\ & s_{p,K}(f) &&:= \sup_{x_0 \in K} \left| \partial^p f(x_0) \right| \\[4pt] \text{ (2) }\ & q_{i,K}(f) &&:= \sup_{|p| \leq i} \left(\sup_{x_0 \in K} \left| \partial^p f(x_0) \right|\right) = \sup_{|p| \leq i} \left(s_{p, K}(f)\right) \\[4pt] \text{ (3) }\ & r_{i,K}(f) &&:= \sup_{\stackrel{|p| \leq i}{x_0 \in K}} \left| \partial^p f(x_0) \right| \\[4pt] \text{ (4) }\ & t_{i,K}(f) &&:= \sup_{x_0 \in K} \left(\sum_{|p| \leq i} \left| \partial^p f(x_0) \right|\right) \end{alignat}</math> while for <math>K = \varnothing,</math> define all the functions above to be the constant {{math|0}} map. }} All of the functions above are non-negative <math>\R</math>-valued<ref group="note">The image of the [[compact set]] <math>K</math> under a continuous <math>\R</math>-valued map (for example, <math>x \mapsto \left|\partial^p f(x)\right|</math> for <math>x \in U</math>) is itself a compact, and thus bounded, subset of <math>\R.</math> If <math>K \neq \varnothing</math> then this implies that each of the functions defined above is <math>\R</math>-valued (that is, none of the [[Infimum and supremum|supremums]] above are ever equal to <math>\infty</math>).</ref> [[seminorm]]s on <math>C^k(U).</math> As explained in [[Locally convex topological vector space#Definition via seminorms|this article]], every set of seminorms on a vector space induces a [[Locally convex topological vector space|locally convex]] [[Topological vector space|vector topology]]. Each of the following sets of seminorms <math display=block>\begin{alignat}{4} A ~:= \quad &\{q_{i,K} &&: \;K \text{ compact and } \;&&i \in \N \text{ satisfies } \;&&0 \leq i \leq k\} \\ B ~:= \quad &\{r_{i,K} &&: \;K \text{ compact and } \;&&i \in \N \text{ satisfies } \;&&0 \leq i \leq k\} \\ C ~:= \quad &\{t_{i,K} &&: \;K \text{ compact and } \;&&i \in \N \text{ satisfies } \;&&0 \leq i \leq k\} \\ D ~:= \quad &\{s_{p,K} &&: \;K \text{ compact and } \;&&p \in \N^n \text{ satisfies } \;&&|p| \leq k\} \end{alignat}</math> generate the same [[Locally convex topological vector space|locally convex]] [[Topological vector space|vector topology]] on <math>C^k(U)</math> (so for example, the topology generated by the seminorms in <math>A</math> is equal to the topology generated by those in <math>C</math>). {{block indent|em=1.5|text=The vector space <math>C^k(U)</math> is endowed with the [[Locally convex topological vector space|locally convex]] topology induced by any one of the four families <math>A, B, C, D</math> of seminorms described above. This topology is also equal to the vector topology induced by {{em|all}} of the seminorms in <math>A \cup B \cup C \cup D.</math>}} With this topology, <math>C^k(U)</math> becomes a locally convex [[Fréchet space]] that is {{em|not}} [[Normable space|normable]]. Every element of <math>A \cup B \cup C \cup D</math> is a continuous seminorm on <math>C^k(U).</math> Under this topology, a [[net (mathematics)|net]] <math>(f_i)_{i\in I}</math> in <math>C^k(U)</math> converges to <math>f \in C^k(U)</math> if and only if for every multi-index <math>p</math> with <math>|p|< k + 1</math> and every compact <math>K,</math> the net of partial derivatives <math>\left(\partial^p f_i\right)_{i \in I}</math> [[Uniform convergence|converges uniformly]] to <math>\partial^p f</math> on <math>K.</math>{{sfn|Trèves|2006|pp=85-89}} For any <math>k \in \{0, 1, 2, \ldots, \infty\},</math> any [[Bounded set (topological vector space)|(von Neumann) bounded subset]] of <math>C^{k+1}(U)</math> is a [[relatively compact]] subset of <math>C^k(U).</math>{{sfn|Trèves|2006|pp=142-149}} In particular, a subset of <math>C^\infty(U)</math> is bounded if and only if it is bounded in <math>C^i(U)</math> for all <math>i \in \N.</math>{{sfn|Trèves|2006| pp=142-149}} The space <math>C^k(U)</math> is a [[Montel space]] if and only if <math>k = \infty.</math>{{sfn|Trèves|2006|pp=356-358}} A subset <math>W</math> of <math>C^\infty(U)</math> is open in this topology if and only if there exists <math>i\in \N</math> such that <math>W</math> is open when <math>C^\infty(U)</math> is endowed with the [[subspace topology]] induced on it by <math>C^i(U).</math> ====Topology on ''C''<sup>''k''</sup>(''K'')==== As before, fix <math>k \in \{0, 1, 2, \ldots, \infty\}.</math> Recall that if <math>K</math> is any compact subset of <math>U</math> then <math>C^k(K) \subseteq C^k(U).</math> {{block indent|em=1.5|text='''Assumption''': For any compact subset <math>K \subseteq U,</math> we will henceforth assume that <math>C^k(K)</math> is endowed with the [[subspace topology]] it inherits from the [[Fréchet space]] <math>C^k(U).</math>}} If <math>k</math> is finite then <math>C^k(K)</math> is a [[Banach space]]{{sfn|Trèves|2006|pp=131-134}} with a topology that can be defined by the [[Norm (mathematics)|norm]] <math display=block>r_K(f) := \sup_{|p|<k} \left( \sup_{x_0 \in K} \left|\partial^p f(x_0)\right| \right).</math> ====Trivial extensions and independence of ''C''<sup>''k''</sup>(''K'')'s topology from ''U''==== {{anchor|Omitting the open set from notation}} Suppose <math>U</math> is an open subset of <math>\R^n</math> and <math>K \subseteq U</math> is a compact subset. By definition, elements of <math>C^k(K)</math> are functions with domain <math>U</math> (in symbols, <math>C^k(K) \subseteq C^k(U)</math>), so the space <math>C^k(K)</math> and its topology depend on <math>U;</math> to make this dependence on the open set <math>U</math> clear, temporarily denote <math>C^k(K)</math> by <math>C^k(K;U).</math> Importantly, changing the set <math>U</math> to a different open subset <math>U'</math> (with <math>K \subseteq U'</math>) will change the set <math>C^k(K)</math> from <math>C^k(K;U)</math> to <math>C^k(K;U'),</math><ref group="note">Exactly as with <math>C^k(K;U),</math> the space <math>C^k(K; U')</math> is defined to be the vector subspace of <math>C^k(U')</math> consisting of maps with [[#support of a function|support]] contained in <math>K</math> endowed with the subspace topology it inherits from <math>C^k(U')</math>.</ref> so that elements of <math>C^k(K)</math> will be functions with domain <math>U'</math> instead of <math>U.</math> Despite <math>C^k(K)</math> depending on the open set (<math>U \text{ or } U'</math>), the standard notation for <math>C^k(K)</math> makes no mention of it. This is justified because, as this subsection will now explain, the space <math>C^k(K;U)</math> is canonically identified as a subspace of <math>C^k(K;U')</math> (both algebraically and topologically). It is enough to explain how to canonically identify <math>C^k(K; U)</math> with <math>C^k(K; U')</math> when one of <math>U</math> and <math>U'</math> is a subset of the other. The reason is that if <math>V</math> and <math>W</math> are arbitrary open subsets of <math>\R^n</math> containing <math>K</math> then the open set <math>U := V \cap W</math> also contains <math>K,</math> so that each of <math>C^k(K; V)</math> and <math>C^k(K; W)</math> is canonically identified with <math>C^k(K; V \cap W)</math> and now by transitivity, <math>C^k(K; V)</math> is thus identified with <math>C^k(K; W).</math> So assume <math>U \subseteq V</math> are open subsets of <math>\R^n</math> containing <math>K.</math> Given <math>f \in C_c^k(U),</math> its {{em|'''trivial extension''' to <math>V</math>}} is the function <math>F : V \to \Complex</math> defined by: <math display=block>F(x) = \begin{cases} f(x) & x \in U, \\ 0 & \text{otherwise}. \end{cases}</math> This trivial extension belongs to <math>C^k(V)</math> (because <math>f \in C_c^k(U)</math> has compact support) and it will be denoted by <math>I(f)</math> (that is, <math>I(f) := F</math>). The assignment <math>f \mapsto I(f)</math> thus induces a map <math>I : C_c^k(U) \to C^k(V)</math> that sends a function in <math>C_c^k(U)</math> to its trivial extension on <math>V.</math> This map is a linear [[Injective function|injection]] and for every compact subset <math>K \subseteq U</math> (where <math>K</math> is also a compact subset of <math>V</math> since <math>K \subseteq U \subseteq V</math>), <math display=block>\begin{alignat}{4} I\left(C^k(K; U)\right) &~=~ C^k(K; V) \qquad \text{ and thus } \\ I\left(C_c^k(U)\right) &~\subseteq~ C_c^k(V). \end{alignat}</math> If <math>I</math> is restricted to <math>C^k(K; U)</math> then the following induced linear map is a [[homeomorphism]] (linear homeomorphisms are called {{em|[[TVS-isomorphism]]s}}): <math display=block>\begin{alignat}{4} \,& C^k(K; U) && \to \,&& C^k(K;V) \\ & f && \mapsto\,&& I(f) \\ \end{alignat}</math> and thus the next map is a [[topological embedding]]: <math display=block>\begin{alignat}{4} \,& C^k(K; U) && \to \,&& C^k(V) \\ & f && \mapsto\,&& I(f). \\ \end{alignat}</math> Using the injection <math display=block>I : C_c^k(U) \to C^k(V)</math> the vector space <math>C_c^k(U)</math> is canonically identified with its image in <math>C_c^k(V) \subseteq C^k(V).</math> Because <math>C^k(K; U) \subseteq C_c^k(U),</math> through this identification, <math>C^k(K; U)</math> can also be considered as a subset of <math>C^k(V).</math> Thus the topology on <math>C^k(K;U)</math> is independent of the open subset <math>U</math> of <math>\R^n</math> that contains <math>K,</math>{{sfn|Rudin|1991|pp=149-181}} which justifies the practice of writing <math>C^k(K)</math> instead of <math>C^k(K; U).</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Distribution (mathematics)
(section)
Add topic