Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Dirichlet convolution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Dirichlet inverse== ===Examples=== Given an arithmetic function <math>f</math> its Dirichlet inverse <math>g = f^{-1} </math> may be calculated recursively: the value of <math>g(n) </math> is in terms of <math>g(m)</math> for <math>m<n</math>. For <math>n=1</math>: :<math>(f * g) (1) = f(1) g(1) = \varepsilon(1) = 1 </math>, so :<math>g(1) = 1/f(1)</math>. This implies that <math>f</math> does not have a Dirichlet inverse if <math>f(1) = 0</math>. For <math>n=2</math>: :<math>(f * g) (2) = f(1) g(2) + f(2) g(1) = \varepsilon(2) = 0</math>, :<math>g(2) = -(f(2) g(1))/f(1) </math>, For <math>n=3</math>: : <math>(f * g) (3) = f(1) g(3) + f(3) g(1) = \varepsilon(3) = 0</math>, : <math>g(3) = -(f(3) g(1))/f(1) </math>, For <math>n=4</math>: : <math>(f * g) (4) = f(1) g(4) + f(2) g(2) + f(4) g(1) = \varepsilon(4) = 0</math>, : <math>g(4) = -(f(4) g(1) + f(2) g(2))/f(1) </math>, and in general for <math>n>1</math>, :<math> g(n) \ =\ \frac {-1}{f(1)} \mathop{\sum_{d\,\mid \,n}}_{d < n} f\left(\frac{n}{d}\right) g(d). </math> ===Properties=== The following properties of the Dirichlet inverse hold:<ref>Again see Apostol Chapter 2 and the exercises at the end of the chapter.</ref> * The function ''f'' has a Dirichlet inverse if and only if {{nowrap|''f''(1) ≠ 0}}. * The Dirichlet inverse of a [[multiplicative function]] is again multiplicative. * The Dirichlet inverse of a Dirichlet convolution is the convolution of the inverses of each function: <math>(f \ast g)^{-1} = f^{-1} \ast g^{-1}</math>. * A multiplicative function ''f'' is [[completely multiplicative]] if and only if <math>f^{-1}(n) = \mu(n) f(n)</math>. * If ''f'' is [[completely multiplicative]] then <math>(f \cdot g)^{-1} = f \cdot g^{-1}</math> whenever <math>g(1) \neq 0</math> and where <math>\cdot</math> denotes pointwise multiplication of functions. ===Other formulas=== {| class="wikitable" border="1" ! Arithmetic function !! Dirichlet inverse:<ref>See Apostol Chapter 2.</ref> |- | Constant function with value 1 ||[[Möbius function]] ''μ'' |- | <math>n^{\alpha}</math> || <math>\mu(n) \,n^\alpha</math> |- | [[Liouville's function]] ''λ'' || Absolute value of Möbius function {{abs|''μ''}} |- | [[Euler's totient function]] <math>\varphi</math> ||<math>\sum_{d|n} d\, \mu(d)</math> |- | The [[sum of divisors|generalized sum-of-divisors function]] <math>\sigma_{\alpha}</math> || <math>\sum_{d|n} d^{\alpha} \mu(d) \mu\left(\frac{n}{d}\right)</math> |} An exact, non-recursive formula for the Dirichlet inverse of any [[arithmetic function]] ''f'' is given in [[Divisor sum identities#The Dirichlet inverse of an arithmetic function|Divisor sum identities]]. A more [[partition theory|partition theoretic]] expression for the Dirichlet inverse of ''f'' is given by :<math>f^{-1}(n) = \sum_{k=1}^{\Omega(n)} \left\{ \sum_{{\lambda_1+2\lambda_2+\cdots+k\lambda_k=n} \atop {\lambda_1, \lambda_2, \ldots, \lambda_k | n}} \frac{(\lambda_1+\lambda_2+\cdots+\lambda_k)!}{1! 2! \cdots k!} (-1)^k f(\lambda_1) f(\lambda_2)^2 \cdots f(\lambda_k)^k\right\}.</math> The following formula provides a compact way of expressing the Dirichlet inverse of an invertible arithmetic function ''f'' : <math>f^{-1}=\sum_{k=0}^{+\infty}\frac{(f(1)\varepsilon-f)^{*k}}{f(1)^{k+1}}</math> where the expression <math>(f(1)\varepsilon-f)^{*k}</math> stands for the arithmetic function <math>f(1)\varepsilon-f</math> convoluted with itself ''k'' times. Notice that, for a fixed positive integer <math>n</math>, if <math>k>\Omega(n)</math> then <math>(f(1)\varepsilon-f)^{*k}(n)=0</math> , this is because <math>f(1)\varepsilon(1) - f(1) = 0</math> and every way of expressing ''n'' as a product of ''k'' positive integers must include a 1, so the series on the right hand side converges for every fixed positive integer ''n.''
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Dirichlet convolution
(section)
Add topic