Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cycle (graph theory)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Chordless cycle == [[File:Graph with Chordless and Chorded Cycles.svg|thumb|right|In this graph the green cycle AβBβCβDβEβFβA is chordless whereas the red cycle GβHβIβJβKβLβG is not. This is because the edge {K, I} is a chord.]] A [[chordless cycle]] in a graph, also called a hole or an induced cycle, is a cycle such that no two vertices of the cycle are connected by an edge that does not itself belong to the cycle. An antihole is the [[complement graph|complement]] of a graph hole. Chordless cycles may be used to characterize [[perfect graph]]s: by the [[strong perfect graph theorem]], a graph is perfect if and only if none of its holes or antiholes have an odd number of vertices that is greater than three. A [[chordal graph]], a special type of perfect graph, has no holes of any size greater than three. The [[Girth (graph theory)|girth]] of a graph is the length of its shortest cycle; this cycle is necessarily chordless. [[Cage (graph theory)|Cages]] are defined as the smallest regular graphs with given combinations of degree and girth. A [[peripheral cycle]] is a cycle in a graph with the property that every two edges not on the cycle can be connected by a path whose interior vertices avoid the cycle. In a graph that is not formed by adding one edge to a cycle, a peripheral cycle must be an induced cycle.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cycle (graph theory)
(section)
Add topic