Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Curium
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Chemical=== [[File:Curium-248.png|thumb|A solution of curium|right|150px]] Curium ion in solution almost always has a +3 [[oxidation state]], the most stable oxidation state for curium.<ref>Penneman, p. 24</ref> A +4 oxidation state is seen mainly in a few solid phases, such as CmO<sub>2</sub> and CmF<sub>4</sub>.<ref>{{cite journal|last1=Keenan|first1=Thomas K.|title=First Observation of Aqueous Tetravalent Curium|journal=Journal of the American Chemical Society|volume=83|issue=17|page=3719|date=1961|doi=10.1021/ja01478a039|bibcode=1961JAChS..83.3719K }}</ref><ref name = "asprey" /> Aqueous curium(IV) is only known in the presence of strong oxidizers such as [[potassium persulfate]], and is easily reduced to curium(III) by [[radiolysis]] and even by water itself.<ref name="Lumetta" /> Chemical behavior of curium is different from the actinides thorium and uranium, and is similar to americium and many [[lanthanide]]s. In aqueous solution, the Cm<sup>3+</sup> ion is colorless to pale green;<ref name="g1265">Greenwood, p. 1265</ref> Cm<sup>4+</sup> ion is pale yellow.<ref name="HOWI_1956">Holleman, p. 1956</ref> The optical absorption of Cm<sup>3+</sup> ion contains three sharp peaks at 375.4, 381.2 and 396.5 nm and their strength can be directly converted into the concentration of the ions.<ref>Penneman, pp. 25β26</ref> The +6 oxidation state has only been reported once in solution in 1978, as the curyl ion ({{chem|CmO|2|2+}}): this was prepared from [[beta decay]] of [[americium-242]] in the americium(V) ion {{chem|242|AmO|2|+}}.<ref name="CmO3" /> Failure to get Cm(VI) from oxidation of Cm(III) and Cm(IV) may be due to the high Cm<sup>4+</sup>/Cm<sup>3+</sup> [[ionization energy|ionization potential]] and the instability of Cm(V).<ref name="Lumetta">{{cite book|first1 = Lumetta|last1 = Gregg J.|first2 = Major C.|last2 = Thompson|first3 = Robert A.|last3 = Penneman|first4 = P. Gary|last4 = Eller|contribution = Curium|title = The Chemistry of the Actinide and Transactinide Elements|editor1-first = Lester R.|editor1-last = Morss|editor2-first = Norman M.|editor2-last = Edelstein|editor3-first = Jean|editor3-last = Fuger|edition = 3rd|date = 2006|volume = 3|publisher = Springer|location = Dordrecht, the Netherlands|pages = 1397β1443|url = http://radchem.nevada.edu/classes/rdch710/files/neptunium.pdf|doi = 10.1007/1-4020-3598-5_9|isbn = 978-1-4020-3555-5|access-date = 2013-10-18|archive-date = 2018-01-17|archive-url = https://web.archive.org/web/20180117190715/http://radchem.nevada.edu/classes/rdch710/files/neptunium.pdf|url-status = dead}}</ref> Curium ions are [[HSAB theory|hard Lewis acids]] and thus form most stable complexes with hard bases.<ref>{{cite journal|last1=Jensen|first1=Mark P.|last2=Bond|first2=Andrew H.|title=Comparison of Covalency in the Complexes of Trivalent Actinide and Lanthanide Cations|journal=Journal of the American Chemical Society|volume=124|issue=33|date=2002|pmid=12175247|doi=10.1021/ja0178620|pages=9870β9877|bibcode=2002JAChS.124.9870J |url=https://figshare.com/articles/Comparison_of_Covalency_in_the_Complexes_of_Trivalent_Actinide_and_Lanthanide_Cations/3640428}}</ref> The bonding is mostly ionic, with a small covalent component.<ref>{{cite journal|last1=Seaborg |first1=Glenn T. |title=Overview of the Actinide and Lanthanide (the ''f'') Elements|journal=Radiochimica Acta|date=1993|volume=61|issue=3β4 |pages=115β122|doi=10.1524/ract.1993.61.34.115 |s2cid=99634366 }}</ref> Curium in its complexes commonly exhibits a 9-fold coordination environment, with a [[tricapped trigonal prismatic molecular geometry]].<ref>Greenwood, p. 1267</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Curium
(section)
Add topic