Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Control theory
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Linear and nonlinear control theory== The field of control theory can be divided into two branches: * ''[[Linear control theory]]'' – This applies to systems made of devices which obey the [[superposition principle]], which means roughly that the output is proportional to the input. They are governed by [[linear differential equation]]s. A major subclass is systems which in addition have parameters which do not change with time, called ''[[linear time invariant]]'' (LTI) systems. These systems are amenable to powerful [[frequency domain]] mathematical techniques of great generality, such as the [[Laplace transform]], [[Fourier transform]], [[Z transform]], [[Bode plot]], [[root locus]], and [[Nyquist stability criterion]]. These lead to a description of the system using terms like [[Bandwidth (signal processing)|bandwidth]], [[frequency response]], [[eigenvalue]]s, [[gain (electronics)|gain]], [[resonant frequency|resonant frequencies]], [[zeros and poles]], which give solutions for system response and design techniques for most systems of interest. * ''[[Nonlinear control theory]]'' – This covers a wider class of systems that do not obey the superposition principle, and applies to more real-world systems because all real control systems are nonlinear. These systems are often governed by [[nonlinear differential equation]]s. The few mathematical techniques which have been developed to handle them are more difficult and much less general, often applying only to narrow categories of systems. These include [[limit cycle]] theory, [[Poincaré map]]s, [[Lyapunov function|Lyapunov stability theorem]], and [[describing function]]s. Nonlinear systems are often analyzed using [[numerical method]]s on computers, for example by [[simulation|simulating]] their operation using a [[simulation language]]. If only solutions near a stable point are of interest, nonlinear systems can often be [[linearization|linearized]] by approximating them by a linear system using [[perturbation theory]], and linear techniques can be used.<ref>{{cite web| url = http://www.mathworks.com/help/toolbox/simulink/slref/trim.html| title = trim point}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Control theory
(section)
Add topic