Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Conjunctive normal form
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Conversion by syntactic means ==== Convert to CNF the propositional formula <math>\phi</math>. '''Step 1''': Convert its negation to disjunctive normal form.<ref name="dnf">see {{slink|Disjunctive normal form#Conversion to DNF}}</ref> <math>\lnot \phi_{DNF} = (C_1 \lor C_2 \lor \ldots \lor C_i \lor \ldots \lor C_m)</math>,{{refn|<math>1 \le m \le</math> [[Disjunctive normal form#max_conjunctions|maximum number of conjunctions]] for <math>\phi</math>}} where each <math>C_i</math> is a conjunction of literals <math>l_{i1} \land l_{i2} \land \ldots \land l_{in_i}</math>.{{refn|<math>1 \le in_i \le</math> [[Disjunctive normal form#max conjunctions|maximum number of literals]] for <math>\phi</math>}} '''Step 2''': Negate <math>\lnot \phi_{DNF}</math>. Then shift <math>\lnot</math> inwards by applying the [[De Morgan's laws#Formal notation|(generalized) De Morgan's equivalences]] until no longer possible. <math display="block">\begin{align} \phi &\leftrightarrow \lnot \lnot \phi_{DNF} \\ &= \lnot (C_1 \lor C_2 \lor \ldots \lor C_i \lor \ldots \lor C_m) \\ &\leftrightarrow \lnot C_1 \land \lnot C_2 \land \ldots \land \lnot C_i \land \ldots \land \lnot C_m &&\text{// (generalized) D.M.} \end{align}</math> where<math display="block">\begin{align} \lnot C_i &= \lnot (l_{i1} \land l_{i2} \land \ldots \land l_{in_i}) \\ &\leftrightarrow (\lnot l_{i1} \lor \lnot l_{i2} \lor \ldots \lor \lnot l_{in_i}) &&\text{// (generalized) D.M.} \end{align}</math> '''Step 3''': Remove all double negations. '''Example''' Convert to CNF the propositional formula <math>\phi = ((\lnot (p \land q)) \leftrightarrow (\lnot r \uparrow (p \oplus q)))</math>.{{refn|name=phiverbose|1=<math>\phi</math> = (('''[[Negation|NOT]]''' (p '''[[Logical conjunction|AND]]''' q)) '''[[If and only if|IFF]]''' (('''[[Negation|NOT]]''' r) '''[[Sheffer stroke|NAND]]''' (p '''[[XOR]]''' q)))}} The (full) DNF equivalent of its negation is<ref name="dnf" /><br/> <math> \lnot \phi_{DNF} = ( p \land q \land r) \lor ( p \land q \land \lnot r) \lor ( p \land \lnot q \land \lnot r) \lor (\lnot p \land q \land \lnot r) </math> <math display="block">\begin{align} \phi &\leftrightarrow \lnot \lnot \phi_{DNF} \\ &= \lnot \{ ( p \land q \land r) \lor ( p \land q \land \lnot r) \lor ( p \land \lnot q \land \lnot r) \lor (\lnot p \land q \land \lnot r) \} \\ &\leftrightarrow \underline{\lnot( p \land q \land r)} \land \underline{\lnot( p \land q \land \lnot r)} \land \underline{\lnot( p \land \lnot q \land \lnot r)} \land \underline{\lnot(\lnot p \land q \land \lnot r)} &&\text{// generalized D.M. } \\ &\leftrightarrow (\lnot p \lor \lnot q \lor \lnot r) \land (\lnot p \lor \lnot q \lor \lnot \lnot r) \land (\lnot p \lor \lnot \lnot q \lor \lnot \lnot r) \land (\lnot \lnot p \lor \lnot q \lor \lnot \lnot r) &&\text{// generalized D.M. } (4 \times) \\ &\leftrightarrow (\lnot p \lor \lnot q \lor \lnot r) \land (\lnot p \lor \lnot q \lor r) \land (\lnot p \lor q \lor r) \land ( p \lor \lnot q \lor r) &&\text{// remove all } \lnot \lnot \\ &= \phi_{CNF} \end{align}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Conjunctive normal form
(section)
Add topic