Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Catalan's constant
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Integral identities== As Seán Stewart writes, "There is a rich and seemingly endless source of definite integrals that can be equated to or expressed in terms of Catalan's constant."<ref>{{citation | last = Stewart | first = Seán M. | doi = 10.1017/mag.2020.99 | issue = 561 | journal = [[The Mathematical Gazette]] | mr = 4163926 | pages = 449–459 | title = A Catalan constant inspired integral odyssey | volume = 104 | year = 2020| s2cid = 225116026 }}</ref> Some of these expressions include: <math display="block">\begin{align} G &= -\frac{1}{\pi i}\int_{0}^{\frac{\pi}{2}} \ln\ln \tan x \ln \tan x \,dx \\[3pt] G &= \iint_{[0,1]^2} \! \frac{1}{1+x^2 y^2} \,dx\, dy \\[3pt] G &= \int_0^1\int_0^{1-x} \frac{1}{1 -x^2-y^2} \,dy\,dx \\[3pt] G &= \int_1^\infty \frac{\ln t}{1 + t^2} \,dt \\[3pt] G &= -\int_0^1 \frac{\ln t}{1 + t^2} \,dt \\[3pt] G &= \frac{1}{2} \int_0^\frac{\pi}{2} \frac{t}{\sin t} \,dt \\[3pt] G &= \int_0^\frac{\pi}{4} \ln \cot t \,dt \\[3pt] G &= \frac{1}{2} \int_0^\frac{\pi}{2} \ln \left( \sec t +\tan t \right) \,dt \\[3pt] G &= \int_0^1 \frac{\arccos t}{\sqrt{1+t^2}} \,dt \\[3pt] G &= \int_0^1 \frac{\operatorname{arcsinh} t}{\sqrt{1-t^2}} \,dt \\[3pt] G &= \frac{1}{2} \int_0^\infty \frac{\operatorname{arctan} t}{t\sqrt{1+t^2}} \,dt \\[3pt] G &= \frac{1}{2} \int_0^1 \frac{\operatorname{arctanh} t}{\sqrt{1-t^2}} \,dt \\[3pt] G &= \int_0^\infty \arccot e^{t} \,dt \\[3pt] G &= \frac{1}{4} \int_0^{{\pi^2}/{4}} \csc \sqrt{t} \,dt \\[3pt] G &= \frac{1}{16} \left(\pi^2 + 4\int_1^\infty \arccsc^2 t \,dt\right) \\[3pt] G &= \frac{1}{2} \int_0^\infty \frac{t}{\cosh t} \,dt \\[3pt] G &= \frac{\pi}{2} \int_1^\infty \frac{\left(t^4-6t^2+1\right)\ln\ln t}{\left(1+t^2\right)^3} \,dt \\[3pt] G &= \frac{1}{2} \int_0^\infty \frac{\arcsin \left(\sin t\right)}{t} \,dt \\[3pt] G &= 1 + \lim_{\alpha\to{1^-}}\!\left\{\int_0^{\alpha}\!\frac{\left(1+6t^2+t^4\right)\arctan{t}}{t\left(1-t^2\right)^2}\, dt + 2\operatorname{artanh}{\alpha} - \frac{\pi\alpha}{1-\alpha^2} \right\} \\[3pt] G &= 1 - \frac18 \iint_{\R^2}\!\!\frac{x\sin\left(2xy/\pi\right)}{\,\left(x^2+\pi^2\right)\cosh x\sinh y\,} \,dx\,dy \\[3pt] G &= \int_{0}^{\infty}\int_{0}^{\infty}\frac{\sqrt[4]{x} \left(\sqrt{x} \sqrt{y}-1\right)}{(x+1)^2 \sqrt[4]{y} (y+1)^2 \log (x y)}dxdy \end{align}</math> where the last three formulas are related to [[Carl Johan Malmsten|Malmsten's]] integrals.<ref>{{Cite journal| first1=Iaroslav| last1=Blagouchine| title=Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results| year=2014| doi=10.1007/s11139-013-9528-5| url=https://iblagouchine.perso.centrale-marseille.fr/publications/Blagouchine-Malmsten-integrals-and-their-evaluation-by-contour-integration-methods-(Ramanujan-J-2014).pdf| volume=35| journal=The Ramanujan Journal| pages=21–110| s2cid=120943474| access-date=2018-10-01| archive-url=https://web.archive.org/web/20181002020243/https://iblagouchine.perso.centrale-marseille.fr/publications/Blagouchine-Malmsten-integrals-and-their-evaluation-by-contour-integration-methods-(Ramanujan-J-2014).pdf| archive-date=2018-10-02| url-status=dead }}</ref> If {{math|K(''k'')}} is the [[Elliptic integral#Complete elliptic integral of the first kind|complete elliptic integral of the first kind]], as a function of the elliptic modulus {{math|''k''}}, then <math display="block"> G = \tfrac{1}{2} \int_0^1 \mathrm{K}(k)\,dk </math> If {{math|E(''k'')}} is the [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integral of the second kind]], as a function of the elliptic modulus {{math|''k''}}, then <math display="block"> G = -\tfrac{1}{2}+\int_0^1 \mathrm{E}(k)\,dk </math> With the [[gamma function]] {{math|1=Γ(''x'' + 1) = ''x''!}} <math display="block">\begin{align} G &= \frac{\pi}{4} \int_0^1 \Gamma\left(1+\frac{x}{2}\right)\Gamma\left(1-\frac{x}{2}\right)\,dx \\ &= \frac{\pi}{2} \int_0^\frac12\Gamma(1+y)\Gamma(1-y)\,dy \end{align}</math> The integral <math display="block"> G = \operatorname{Ti}_2(1)=\int_0^1 \frac{\arctan t}{t}\,dt </math> is a known special function, called the [[inverse tangent integral]], and was extensively studied by [[Srinivasa Ramanujan]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Catalan's constant
(section)
Add topic