Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Calculus of variations
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Example === In order to illustrate this process, consider the problem of finding the extremal function <math>y = f(x),</math> which is the shortest curve that connects two points <math>\left(x_1, y_1\right)</math> and <math>\left(x_2, y_2\right).</math> The [[arc length]] of the curve is given by <math display="block">A[y] = \int_{x_1}^{x_2} \sqrt{1 + [ y'(x) ]^2} \, dx \, ,</math> with <math display="block">y'(x) = \frac{dy}{dx} \, , \ \ y_1=f(x_1) \, , \ \ y_2=f(x_2) \, .</math> Note that assuming {{mvar|y}} is a function of {{mvar|x}} loses generality; ideally both should be a function of some other parameter. This approach is good solely for instructive purposes. The Euler–Lagrange equation will now be used to find the extremal function <math>f(x)</math> that minimizes the functional <math>A[y].</math> <math display="block">\frac{\partial L}{\partial f} -\frac{d}{dx} \frac{\partial L}{\partial f'}=0</math> with <math display="block">L = \sqrt{1 + [ f'(x) ]^2} \, .</math> Since <math>f</math> does not appear explicitly in <math>L,</math> the first term in the Euler–Lagrange equation vanishes for all <math>f(x)</math> and thus, <math display="block">\frac{d}{dx} \frac{\partial L}{\partial f'} = 0 \, .</math> Substituting for <math>L</math> and taking the derivative, <math display="block">\frac{d}{dx} \ \frac{f'(x)} {\sqrt{1 + [f'(x)]^2}} \ = 0 \, .</math> Thus <math display="block">\frac{f'(x)}{\sqrt{1+[f'(x)]^2}} = c \, ,</math> for some constant <math>c.</math> Then <math display="block">\frac{[f'(x)]^2}{1+[f'(x)]^2} = c^2 \, ,</math> where <math display="block">0 \le c^2<1.</math> Solving, we get <math display="block">[f'(x)]^2=\frac{c^2}{1-c^2}</math> which implies that <math display="block">f'(x)=m</math> is a constant and therefore that the shortest curve that connects two points <math>\left(x_1, y_1\right)</math> and <math>\left(x_2, y_2\right)</math> is <math display="block">f(x) = m x + b \qquad \text{with} \ \ m = \frac{y_2 - y_1}{x_2 - x_1} \quad \text{and} \quad b = \frac{x_2 y_1 - x_1 y_2}{x_2 - x_1}</math> and we have thus found the extremal function <math>f(x)</math> that minimizes the functional <math>A[y]</math> so that <math>A[f]</math> is a minimum. The equation for a straight line is <math>y = mx+b.</math> In other words, the shortest distance between two points is a straight line.{{efn|name=ArchimedesStraight| As a historical note, this is an axiom of [[Archimedes]]. See e.g. Kelland (1843).<ref>{{cite book |last=Kelland |first=Philip |author-link=Philip Kelland| title=Lectures on the principles of demonstrative mathematics |year=1843 |page=58 |url=https://books.google.com/books?id=yQCFAAAAIAAJ&pg=PA58 |via=Google Books}}</ref>}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Calculus of variations
(section)
Add topic