Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Analysis of algorithms
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Orders of growth=== {{main|Big O notation}} Informally, an algorithm can be said to exhibit a growth rate on the order of a [[Function (mathematics)|mathematical function]] if beyond a certain input size {{mvar|''n''}}, the function {{math|''f''(''n'')}} times a positive constant provides an [[Asymptotic analysis|upper bound or limit]] for the run-time of that algorithm. In other words, for a given input size {{mvar|''n''}} greater than some {{mvar|''n''}}<sub>0</sub> and a constant {{mvar|''c''}}, the run-time of that algorithm will never be larger than {{math|''c'' Γ ''f''(''n'')}}. This concept is frequently expressed using Big O notation. For example, since the run-time of [[insertion sort]] [[quadratic growth|grows quadratically]] as its input size increases, insertion sort can be said to be of order {{math|''O''(''n''<sup>2</sup>)}}. Big O notation is a convenient way to express the [[Best, worst and average case|worst-case scenario]] for a given algorithm, although it can also be used to express the average-case — for example, the worst-case scenario for [[quicksort]] is {{math|''O''(''n''<sup>2</sup>)}}, but the average-case run-time is {{math|''O''(''n'' log ''n'')}}.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Analysis of algorithms
(section)
Add topic