Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Σ-algebra
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Limits of sets=== Many uses of measure, such as the probability concept of [[convergence of random variables|almost sure convergence]], involve [[set-theoretic limit|limits of sequences of sets]]. For this, closure under countable unions and intersections is paramount. Set limits are defined as follows on σ-algebras. * The {{em|[[limit supremum]]}} or {{em|outer limit}} of a sequence <math>A_1, A_2, A_3, \ldots</math> of subsets of <math>X</math> is <math display=block>\limsup_{n\to\infty} A_n = \bigcap_{n=1}^\infty \bigcup_{m=n}^\infty A_m = \bigcap_{n=1}^\infty A_n \cup A_{n+1} \cup \cdots.</math> It consists of all points <math>x</math> that are in infinitely many of these sets (or equivalently, that are in [[Cofinal (mathematics)|{{em|cofinally}} many]] of them). That is, <math>x \in \limsup_{n\to\infty} A_n</math> if and only if there exists an infinite [[subsequence]] <math> A_{n_1}, A_{n_2}, \ldots</math> (where <math>n_1 < n_2 < \cdots</math>) of sets that all contain <math>x;</math> that is, such that <math>x \in A_{n_1} \cap A_{n_2} \cap \cdots.</math> * The {{em|[[limit infimum]]}} or {{em|inner limit}} of a sequence <math>A_1, A_2, A_3, \ldots</math> of subsets of <math>X</math> is <math display=block>\liminf_{n\to\infty} A_n = \bigcup_{n=1}^\infty \bigcap_{m=n}^\infty A_m = \bigcup_{n=1}^\infty A_n \cap A_{n+1} \cap \cdots.</math> It consists of all points that are in all but finitely many of these sets (or equivalently, that are {{em|eventually}} in all of them). That is, <math>x \in \liminf_{n\to\infty} A_n</math> if and only if there exists an index <math>N \in \N</math> such that <math>A_N, A_{N+1}, \ldots</math> all contain <math>x;</math> that is, such that <math>x \in A_N \cap A_{N+1} \cap \cdots.</math> The inner limit is always a subset of the outer limit: <math display=block>\liminf_{n\to\infty} A_n ~\subseteq~ \limsup_{n\to\infty} A_n.</math> If these two sets are equal then their limit <math>\lim_{n\to\infty} A_n</math> exists and is equal to this common set: <math display=block>\lim_{n\to\infty} A_n := \liminf_{n\to\infty} A_n = \limsup_{n\to\infty} A_n.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Σ-algebra
(section)
Add topic