Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Hyperbola
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Reflection property=== [[File:Hyperbel-wh-s.svg|300px|thumb|Hyperbola: the tangent bisects the lines through the foci]] The tangent at a point <math>P</math> bisects the angle between the lines <math>\overline{PF_1}, \overline{PF_2}.</math> This is called the ''optical property'' or ''reflection property'' of a hyperbola.<ref> {{citation |last1=Coffman |first1=R. T. |last2=Ogilvy |first2=C. S. |year=1963 |title=The 'Reflection Property' of the Conics |journal=Mathematics Magazine |volume=36 |number=1 |pages=11β12 |jstor=2688124 |doi=10.1080/0025570X.1963.11975375 }} {{pb}} {{citation |last=Flanders |first=Harley |year=1968 |title=The Optical Property of the Conics |journal=American Mathematical Monthly |volume=75 |number=4 |page=399 |jstor=2313439 |doi=10.1080/00029890.1968.11970997 }} {{pb}} {{citation |last=Brozinsky |first=Michael K. |year=1984 |title=Reflection Property of the Ellipse and the Hyperbola |journal=College Mathematics Journal |volume=15 |number=2 |pages=140β42 |jstor=2686519 |doi=10.1080/00494925.1984.11972763 <!-- Deny Citation Bot--> |doi-broken-date=2024-12-16 |url=https://www.tandfonline.com/doi/abs/10.1080/00494925.1984.11972763 |url-access=subscription }} </ref> ;Proof: Let <math>L</math> be the point on the line <math>\overline{PF_2}</math> with the distance <math>2a</math> to the focus <math>F_2</math> (see diagram, <math>a</math> is the semi major axis of the hyperbola). Line <math>w</math> is the bisector of the angle between the lines <math>\overline{PF_1}, \overline{PF_2}</math>. In order to prove that <math>w</math> is the tangent line at point <math>P</math>, one checks that any point <math>Q</math> on line <math>w</math> which is different from <math>P</math> cannot be on the hyperbola. Hence <math>w</math> has only point <math>P</math> in common with the hyperbola and is, therefore, the tangent at point <math>P</math>. <br/> From the diagram and the [[triangle inequality]] one recognizes that <math>|QF_2|<|LF_2|+|QL|=2a+|QF_1|</math> holds, which means: <math>|QF_2|-|QF_1|<2a</math>. But if <math>Q</math> is a point of the hyperbola, the difference should be <math>2a</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Hyperbola
(section)
Add topic