Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Binomial coefficient
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Multiset (rising) binomial coefficient === {{main|Multichoose#Counting multisets}} Binomial coefficients count subsets of prescribed size from a given set. A related combinatorial problem is to count [[multiset]]s of prescribed size with elements drawn from a given set, that is, to count the number of ways to select a certain number of elements from a given set with the possibility of selecting the same element repeatedly. The resulting numbers are called ''[[Multiset#Counting multisets|multiset coefficients]]'';<ref> {{citation | last = Munarini | first = Emanuele | doi = 10.2298/AADM110609014M | issue = 2 | journal = Applicable Analysis and Discrete Mathematics | mr = 2867317 | pages = 176β200 | title = Riordan matrices and sums of harmonic numbers | volume = 5 | year = 2011| url = http://www.doiserbia.nb.rs/img/doi/1452-8630/2011/1452-86301100014M.pdf }}.</ref> the number of ways to "multichoose" (i.e., choose with replacement) ''k'' items from an ''n'' element set is denoted <math display="inline">\left(\!\!\binom n k\!\!\right)</math>. To avoid ambiguity and confusion with ''n'''s main denotation in this article,<br /> let {{math|1=''f'' = ''n'' = ''r'' + (''k'' β 1)}} and {{math|1=''r'' = ''f'' β (''k'' β 1)}}. Multiset coefficients may be expressed in terms of binomial coefficients by the rule <math display="block">\binom{f}{k}=\left(\!\!\binom{r}{k}\!\!\right)=\binom{r+k-1}{k}.</math> One possible alternative characterization of this identity is as follows: We may define the [[falling factorial]] as <math display="block">(f)_{k}=f^{\underline k}=(f-k+1)\cdots(f-3)\cdot(f-2)\cdot(f-1)\cdot f,</math> and the corresponding rising factorial as <math display="block">r^{(k)}=\,r^{\overline k}=\,r\cdot(r+1)\cdot(r+2)\cdot(r+3)\cdots(r+k-1);</math> so, for example, <math display="block">17\cdot18\cdot19\cdot20\cdot21=(21)_{5}=21^{\underline 5}=17^{\overline 5}=17^{(5)}.</math> Then the binomial coefficients may be written as <math display="block">\binom{f}{k} = \frac{(f)_{k}}{k!} =\frac{(f-k+1)\cdots(f-2)\cdot(f-1)\cdot f}{1\cdot2\cdot3\cdot4\cdot5\cdots k} ,</math> while the corresponding multiset coefficient is defined by replacing the falling with the rising factorial: <math display="block">\left(\!\!\binom{r}{k}\!\!\right)=\frac{r^{(k)}}{k!}=\frac{r\cdot(r+1)\cdot(r+2)\cdots(r+k-1)}{1\cdot2\cdot3\cdot4\cdot5\cdots k}.</math> ==== Generalization to negative integers ''n'' ==== {{Pascal_triangle_extended.svg}} For any ''n'', : <math>\begin{align}\binom{-n}{k} &= \frac{-n\cdot-(n+1)\dots-(n+k-2)\cdot-(n+k-1)}{k!}\\ &=(-1)^k\;\frac{n\cdot(n+1)\cdot(n+2)\cdots (n + k - 1)}{k!}\\ &=(-1)^k\binom{n + k - 1}{k}\\ &=(-1)^k\left(\!\!\binom{n}{k}\!\!\right)\;.\end{align}</math> In particular, binomial coefficients evaluated at negative integers ''n'' are given by signed multiset coefficients. In the special case <math>n = -1</math>, this reduces to <math>(-1)^k=\binom{-1}{k}=\left(\!\!\binom{-k}{k}\!\!\right) .</math> For example, if ''n'' = β4 and ''k'' = 7, then ''r'' = 4 and ''f'' = 10: : <math>\begin{align}\binom{-4}{7} &= \frac {-10\cdot-9\cdot-8\cdot-7\cdot-6\cdot-5\cdot-4} {1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7}\\ &=(-1)^7\;\frac{4\cdot5\cdot6\cdot7\cdot8\cdot9\cdot10} {1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot7}\\ &=\left(\!\!\binom{-7}{7}\!\!\right)\left(\!\!\binom{4}{7}\!\!\right)=\binom{-1}{7}\binom{10}{7}.\end{align}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Binomial coefficient
(section)
Add topic