Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ammonia
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Electrochemical === The [[electrochemical]] synthesis of ammonia involves the reductive formation of [[lithium nitride]], which can be [[protonated]] to ammonia, given a [[proton]] source. The first use of this chemistry was reported in 1930, where lithium solutions in ethanol were used to produce ammonia at pressures of up to 1000 bar, with ethanol acting as the proton source.<ref>{{Cite journal |last1=Fichter |first1=Fr. |last2=Girard |first2=Pierre |last3=Erlenmeyer |first3=Hans |date=1930-12-01 |title=Elektrolytische Bindung von komprimiertem Stickstoff bei gewöhnlicher Temperatur |url=https://onlinelibrary.wiley.com/doi/10.1002/hlca.19300130604 |journal=Helvetica Chimica Acta |language=en |volume=13 |issue=6 |pages=1228–1236 |doi=10.1002/hlca.19300130604}}</ref> Beyond simply mediating proton transfer to the nitrogen reduction reaction, ethanol has been found to play a multifaceted role, influencing electrolyte transformations and contributing to the formation of the solid electrolyte interphase, which enhances overall reaction efficiency.<ref>{{Cite journal |last1=Bjarke Valbæk Mygind |first1=Jon |last2=Pedersen |first2=Jakob B. |last3=Li |first3=Katja |last4=Deissler |first4=Niklas H. |last5=Saccoccio |first5=Mattia |last6=Fu |first6=Xianbiao |last7=Li |first7=Shaofeng |last8=Sažinas |first8=Rokas |last9=Andersen |first9=Suzanne Z. |last10=Enemark-Rasmussen |first10=Kasper |last11=Vesborg |first11=Peter C. K. |last12=Doganli-Kibsgaard |first12=Jakob |last13=Chorkendorff |first13=Ib |date=2023-11-22 |title=Is Ethanol Essential for the Lithium-Mediated Nitrogen Reduction Reaction? |journal=ChemSusChem |language=en |volume=16 |issue=22 |pages=e202301011 |doi=10.1002/cssc.202301011 |pmid=37681646 |bibcode=2023ChSCh..16E1011B |issn=1864-5631|doi-access=free }}</ref><ref name="Lazouski-2019" /> In 1994, Tsuneto et al. used lithium electrodeposition in [[tetrahydrofuran]] to synthesize ammonia at more moderate pressures with reasonable [[Faradaic efficiency]].<ref>{{Cite journal |last1=Tsuneto |first1=Akira |last2=Kudo |first2=Akihiko |last3=Sakata |first3=Tadayoshi |date=1994-03-04 |title=Lithium-mediated electrochemical reduction of high pressure N2 to NH3 |url=https://dx.doi.org/10.1016/0022-0728%2893%2903025-K |journal=Journal of Electroanalytical Chemistry |language=en |volume=367 |issue=1 |pages=183–188 |doi=10.1016/0022-0728(93)03025-K |issn=1572-6657}}</ref> Subsequent studies have further explored the ethanol–tetrahydrofuran system for electrochemical ammonia synthesis.<ref name="Lazouski-2019">{{Cite journal |last1=Lazouski |first1=Nikifar |last2=Schiffer |first2=Zachary J. |last3=Williams |first3=Kindle |last4=Manthiram |first4=Karthish |date=2019-04-17 |title=Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction |journal=Joule |language=en |volume=3 |issue=4 |pages=1127–1139 |bibcode=2019Joule...3.1127L |doi=10.1016/j.joule.2019.02.003 |issn=2542-4351 |s2cid=107985507 |doi-access=free}}</ref><ref>{{Cite journal |last1=Andersen |first1=Suzanne Z. |last2=Čolić |first2=Viktor |last3=Yang |first3=Sungeun |last4=Schwalbe |first4=Jay A. |last5=Nielander |first5=Adam C. |last6=McEnaney |first6=Joshua M. |last7=Enemark-Rasmussen |first7=Kasper |last8=Baker |first8=Jon G. |last9=Singh |first9=Aayush R. |last10=Rohr |first10=Brian A. |last11=Statt |first11=Michael J. |date=June 2019 |title=A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements |url=https://www.nature.com/articles/s41586-019-1260-x |journal=Nature |language=en |volume=570 |issue=7762 |pages=504–508 |bibcode=2019Natur.570..504A |doi=10.1038/s41586-019-1260-x |issn=1476-4687 |pmid=31117118 |s2cid=162182383 |hdl-access=free |hdl=10044/1/72812}}</ref> In 2020, a solvent-agnostic [[gas diffusion electrode]] was shown to improve nitrogen transport to the reactive lithium. {{chem2|NH3}} production rates of up to {{nobreak|30 ± 5 nmol/(s⋅cm<sup>2</sup>)}} and Faradaic efficiencies of up to 47.5 ± 4% at ambient temperature and 1 bar pressure were achieved.<ref>{{Cite journal |last1=Lazouski |first1=Nikifar |last2=Chung |first2=Minju |last3=Williams |first3=Kindle |last4=Gala |first4=Michal L. |last5=Manthiram |first5=Karthish |date=2020-05-01 |title=Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen |url=https://www.nature.com/articles/s41929-020-0455-8 |journal=Nature Catalysis |language=en |volume=3 |issue=5 |pages=463–469 |doi=10.1038/s41929-020-0455-8 |s2cid=218495730 |issn=2520-1158}}</ref> In 2021, it was demonstrated that ethanol could be replaced with a tetraalkyl [[phosphonium salt]].<ref name="Suryanto-2021">{{Cite journal|last1=Suryanto|first1=Bryan H. R.|last2=Matuszek|first2=Karolina|last3=Choi|first3=Jaecheol|last4=Hodgetts|first4=Rebecca Y.|last5=Du|first5=Hoang-Long|last6=Bakker|first6=Jacinta M.|last7=Kang|first7=Colin S. M.|last8=Cherepanov|first8=Pavel V.|last9=Simonov|first9=Alexandr N.|last10=MacFarlane|first10=Douglas R.|date=2021-06-11|title=Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle|url=https://www.science.org/doi/10.1126/science.abg2371|url-access=registration|journal=Science|language=en|volume=372|issue=6547|pages=1187–1191|doi=10.1126/science.abg2371|issn=0036-8075|pmid=34112690|bibcode=2021Sci...372.1187S|s2cid=235396282}}</ref> The study observed {{chem2|NH3}} production rates of {{nobreak|53 ± 1 nmol/(s⋅cm<sup>2</sup>)}} at 69 ± 1% Faradaic efficiency experiments under 0.5 bar hydrogen and 19.5 bar nitrogen [[partial pressure]] at ambient temperature.<ref name="Suryanto-2021"/> Technology based on this electrochemistry is being developed for commercial fertiliser and fuel production.<ref>{{Cite web|last=Lavars|first=Nick|date=2021-11-30|title=Green ammonia electrolysis breakthrough could finally kill Haber–Bosch|url=https://newatlas.com/energy/green-ammonia-phosphonium-production/|url-status=live|access-date=2021-12-03|website=New Atlas|language=en-US|archive-url=https://web.archive.org/web/20211130072137/https://newatlas.com/energy/green-ammonia-phosphonium-production/ |archive-date=30 November 2021 }}</ref><ref>{{Cite web|last=Blaine|first=Loz|date=2021-11-19|title=FuelPositive promises green ammonia at 60% the cost of today's gray|url=https://newatlas.com/energy/fuelpositive-green-ammonia/|url-status=live|access-date=2021-12-03|website=New Atlas|language=en-US|archive-url=https://web.archive.org/web/20211119060353/https://newatlas.com/energy/fuelpositive-green-ammonia/ |archive-date=19 November 2021 }}</ref> In 2022, ammonia was produced via the lithium mediated process in a continuous-flow electrolyzer also demonstrating the hydrogen gas as proton source. The study synthesized ammonia at 61 ± 1% Faradaic efficiency at a current density of −6 mA/cm<sup>2</sup> at 1 bar and room temperature.<ref name="Fu-2022">{{Cite journal| last1=Fu|first1=Xianbiao| last2=Pedersen|first2=Jakob B.| last3=Zhou|first3=Yuanyuan| last4=Saccoccio|first4=Mattia| last5=Li|first5=Shaofeng| last6=Sažinas|first6=Rokas| last7=Li|first7=Katja| last8=Andersen|first8=Suzanne Z.| last9=Xu|first9=Aoni| last10=Deissler|first10=Niklas H.| last11=Mygind|first11=Jon Bjarke Valbæk| last12=Wei|first12=Chao| last13=Kibsgaard|first13=Jakob| last14=Vesborg|first14=Peter C. K.| last15=Nørskov|first15=Jens K.| last16=Chorkendorff|first16=Ib| date=2022-02-16|title=Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation|url=https://www.science.org/doi/10.1126/science.adf4403|journal=Science|language=en|volume=379|issue=6633|pages=707–712|doi=10.1126/science.adf4403|issn=|pmid=36795804|bibcode=|s2cid=}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ammonia
(section)
Add topic