Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Second law of thermodynamics
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Maxwell's demon === {{main|Maxwell's demon}} [[File:James-clerk-maxwell3.jpg|thumb|upright|James Clerk Maxwell]] [[James Clerk Maxwell]] imagined one container divided into two parts, ''A'' and ''B''. Both parts are filled with the same [[gas]] at equal temperatures and placed next to each other, separated by a wall. Observing the [[molecule]]s on both sides, an imaginary [[demon]] guards a microscopic trapdoor in the wall. When a faster-than-average molecule from ''A'' flies towards the trapdoor, the demon opens it, and the molecule will fly from ''A'' to ''B''. The average [[speed]] of the molecules in ''B'' will have increased while in ''A'' they will have slowed down on average. Since average molecular speed corresponds to temperature, the temperature decreases in ''A'' and increases in ''B'', contrary to the second law of thermodynamics.<ref name=":1">{{Cite web |title=Maxwell's demon {{!}} physics {{!}} Britannica |url=https://www.britannica.com/science/Maxwells-demon |access-date=2023-03-14 |website=www.britannica.com |language=en}}</ref> One response to this question was suggested in 1929 by [[Leó Szilárd]] and later by [[Léon Brillouin]]. Szilárd pointed out that a real-life Maxwell's demon would need to have some means of measuring molecular speed, and that the act of acquiring information would require an expenditure of energy.<ref name=":2">{{Cite journal |last=Norton |first=John |date=3 July 2013 |title=All Shook Up: Fluctuations, Maxwell's Demon and the Thermodynamics of Computation |journal=Entropy |volume=15 |issue=12 |pages=4432–4483 |doi=10.3390/e15104432 |bibcode=2013Entrp..15.4432N |doi-access=free }}</ref> Likewise, Brillouin demonstrated that the decrease in entropy caused by the demon would be less than the entropy produced by choosing molecules based on their speed.<ref name=":1" /> Maxwell's 'demon' repeatedly alters the permeability of the wall between ''A'' and ''B''. It is therefore performing [[thermodynamic operation]]s on a microscopic scale, not just observing ordinary spontaneous or natural macroscopic thermodynamic processes.<ref name=":2" />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Second law of thermodynamics
(section)
Add topic