Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Peripheral Component Interconnect
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Fast back-to-back transactions=== Due to the need for a turnaround cycle between different devices driving PCI bus signals, in general it is necessary to have an idle cycle between PCI bus transactions. However, in some circumstances it is permitted to skip this idle cycle, going directly from the final cycle of one transfer (IRDY# asserted, FRAME# deasserted) to the first cycle of the next (FRAME# asserted, IRDY# deasserted). An initiator may only perform back-to-back transactions when: * they are by the same initiator (or there would be no time to turn around the C/BE# and FRAME# lines), * the first transaction was a write (so there is no need to turn around the AD bus), and * the initiator still has permission (from its GNT# input) to use the PCI bus. Additional timing constraints may come from the need to turn around are the target control lines, particularly DEVSEL#. The target deasserts DEVSEL#, driving it high, in the cycle following the final data phase, which in the case of back-to-back transactions is the first cycle of the address phase. The second cycle of the address phase is then reserved for DEVSEL# turnaround, so if the target is different from the prior one, it must not assert DEVSEL# until the third cycle (medium DEVSEL speed). One case where this problem cannot arise is if the initiator knows somehow (presumably because the addresses share sufficient high-order bits) that the second transfer is addressed to the same target as the prior one. In that case, it may perform back-to-back transactions. All PCI targets must support this. It is also possible for the target to keep track of the requirements. If it never does fast DEVSEL, they are met trivially. If it does, it must wait until medium DEVSEL time unless: * the current transaction was preceded by an idle cycle (is not back-to-back), or * the prior transaction was to the same target, or * the current transaction began with a double address cycle. Targets that have this ability indicate it by a special bit in a PCI configuration register, and if all targets on a bus have it, all initiators may use back-to-back transfers freely. A subtractive decoding bus bridge must know to expect this extra delay in the event of back-to-back cycles, to advertise back-to-back support.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Peripheral Component Interconnect
(section)
Add topic