Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Lightning
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Impact of climate change and air pollution == It is difficult to accurately predict changes in lightning due to [[climate change]] because it is challenging to simulate cloud physics variables that predict lightning (such as convection and cloud ice) in climate models.<ref>{{Cite journal |last1=Charn |first1=Alexander B. |last2=Parishani |first2=Hossein |date=2021 |title=Predictive Proxies of Present and Future Lightning in a Superparameterized Model |url=https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021JD035461 |journal=Journal of Geophysical Research: Atmospheres |language=en |volume=126 |issue=17 |pages=e2021JD035461 |doi=10.1029/2021JD035461 |bibcode=2021JGRD..12635461C |issn=2169-8996}}</ref> A large share of the world's lightning occurs over Africa.<ref>{{Cite journal |last1=Albrecht |first1=Rachel I. |last2=Goodman |first2=Steven J. |last3=Buechler |first3=Dennis E. |last4=Blakeslee |first4=Richard J. |last5=Christian |first5=Hugh J. |date=2016-11-01 |title=Where Are the Lightning Hotspots on Earth? |url=https://journals.ametsoc.org/view/journals/bams/97/11/bams-d-14-00193.1.xml |journal=Bulletin of the American Meteorological Society |language=EN |volume=97 |issue=11 |pages=2051–2068 |doi=10.1175/BAMS-D-14-00193.1 |bibcode=2016BAMS...97.2051A |issn=0003-0007}}</ref> While there are regional variations in how climate change affects lightning across the continent, one study predicts a small increase in the total amount of lightning across the continent with warming. More specifically, the total number of lightning days per year is predicted to decrease, while more cloud ice and stronger convection leads to more lightning strikes occurring on days when lightning does occur.<ref>{{Cite journal |last1=Finney |first1=D. L. |last2=Marsham |first2=J. H. |last3=Wilkinson |first3=J. M. |last4=Field |first4=P. R. |last5=Blyth |first5=A. M. |last6=Jackson |first6=L. S. |last7=Kendon |first7=E. J. |last8=Tucker |first8=S. O. |last9=Stratton |first9=R. A. |date=2020 |title=African Lightning and its Relation to Rainfall and Climate Change in a Convection-Permitting Model |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020GL088163 |journal=Geophysical Research Letters |language=en |volume=47 |issue=23 |pages=e2020GL088163 |doi=10.1029/2020GL088163 |bibcode=2020GeoRL..4788163F |issn=1944-8007}}</ref> Lightning is much less common near the North and South Poles than in other regions.<ref>{{Cite journal |last1=Kaplan |first1=Jed O. |last2=Lau |first2=Katie Hong-Kiu |date=2021-07-06 |title=The WGLC global gridded lightning climatology and time series |url=https://essd.copernicus.org/articles/13/3219/2021/ |journal=Earth System Science Data |language=English |volume=13 |issue=7 |pages=3219–3237 |doi=10.5194/essd-13-3219-2021 |doi-access=free |bibcode=2021ESSD...13.3219K |issn=1866-3508}}</ref><ref>{{Cite journal |last1=Virts |first1=Katrina S. |last2=Wallace |first2=John M. |last3=Hutchins |first3=Michael L. |last4=Holzworth |first4=Robert H. |date=2013-09-01 |title=Highlights of a New Ground-Based, Hourly Global Lightning Climatology |url=https://journals.ametsoc.org/view/journals/bams/94/9/bams-d-12-00082.1.xml |journal=Bulletin of the American Meteorological Society |language=EN |volume=94 |issue=9 |pages=1381–1391 |doi=10.1175/BAMS-D-12-00082.1|bibcode=2013BAMS...94.1381V }}</ref> However, observations are beginning to show that lightning in the [[Arctic]] is increasing.<ref>{{Cite web |last=Ramirez |first=Rachel |date=2022-01-05 |title=Another sign things are getting weird: Lightning around the North Pole increased dramatically in 2021 |url=https://edition.cnn.com/2022/01/05/world/lightning-increased-north-pole-arctic-2021-climate/index.html |access-date=2025-02-25 |website=CNN |language=en}}</ref><ref name="Lightning in the Arctic">{{Cite journal |last1=Holzworth |first1=Robert H. |last2=Brundell |first2=James B. |last3=McCarthy |first3=Michael P. |last4=Jacobson |first4=Abram R. |last5=Rodger |first5=Craig J. |last6=Anderson |first6=Todd S. |date=2021 |title=Lightning in the Arctic |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020GL091366 |journal=Geophysical Research Letters |language=en |volume=48 |issue=7 |pages=e2020GL091366 |doi=10.1029/2020GL091366 |bibcode=2021GeoRL..4891366H |issn=1944-8007}}</ref> and models suggest that climate change will continue to increase the frequency of lightning in the Arctic in future.<ref name=":0">{{Cite journal |last1=Chen |first1=Yang |last2=Romps |first2=David M. |last3=Seeley |first3=Jacob T. |last4=Veraverbeke |first4=Sander |last5=Riley |first5=William J. |last6=Mekonnen |first6=Zelalem A. |last7=Randerson |first7=James T. |date=5 April 2021 |title=Future increases in Arctic lightning and fire risk for permafrost carbon |url=https://www.nature.com/articles/s41558-021-01011-y |journal=Nature Climate Change |language=en |volume=11 |issue=5 |pages=404–410 |doi=10.1038/s41558-021-01011-y |bibcode=2021NatCC..11..404C |hdl=1871.1/5d9d7857-98f5-4339-bb11-a05d9d321fac |issn=1758-6798}}</ref><ref name=":4">{{Cite journal |last=Finney |first=Declan L. |date=5 April 2021 |title=Lightning threatens permafrost |url=https://www.nature.com/articles/s41558-021-01016-7 |journal=Nature Climate Change |language=en |volume=11 |issue=5 |pages=379–380 |doi=10.1038/s41558-021-01016-7 |bibcode=2021NatCC..11..379F |issn=1758-6798}}</ref> The ratio of Arctic summertime lightning strikes has increased from 2010 to 2020 compared to the total lightning strikes in the world, indicating that the region is becoming more influenced by lightning.<ref name="Lightning in the Arctic"/> Lightning activity is increased by particulate emissions (a form of [[air pollution]]).<ref>{{Cite journal |last1=Bentley |first1=Mace |last2=Gerken |first2=Tobias |last3=Duan |first3=Zhuojun |last4=Bonsal |first4=Dudley |last5=Way |first5=Henry |last6=Szakal |first6=Endre |last7=Pham |first7=Mia |last8=Donaldson |first8=Hunter |last9=Griffith |first9=Lucie |date=2024-07-01 |title=Toward untangling thunderstorm-aerosol relationships: An observational study of regions centered on Washington, DC and Kansas City, MO |url=https://www.sciencedirect.com/science/article/pii/S0169809524001844 |journal=Atmospheric Research |volume=304 |pages=107402 |doi=10.1016/j.atmosres.2024.107402 |bibcode=2024AtmRe.30407402B |issn=0169-8095}}</ref><ref>{{cite web |last=Ogasa |first=Nik |date=25 May 2021 |title=Air pollution helps wildfires create their own lightning |url=https://www.science.org/content/article/air-pollution-helps-wildfires-create-their-own-lightning |website=Science}}</ref><ref>{{Cite web |last=Cartwright |first=Jon |date=2018-02-13 |title=Pollution boosts risk of lightning |url=https://physicsworld.com/a/pollution-boosts-risk-of-lightning/ |access-date=2025-02-25 |website=Physics World |language=en-GB}}</ref><ref>{{cite web |last=Baranuik |first=Chris |date=15 November 2017 |title=A Bolt from the Brown: Why Pollution May Increase Lightning Strikes |url=https://www.scientificamerican.com/article/a-bolt-from-the-brown-why-pollution-may-increase-lightning-strikes/ |website=[[Scientific American]]}}</ref> However, this only occurs up to a point (aerosol [[optical depth]] = 0.3). Once this threshold is crossed, lightning is then suppressed by further increases in [[particulates]].<ref>{{Cite journal |last1=Altaratz |first1=Orit |last2=Koren |first2=Ilan |last3=Yair |first3=Yoav |last4=Price |first4=Colin |date=2010 |title=Lightning response to smoke from Amazonian fires |url=https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010GL042679 |journal=Geophysical Research Letters |language=en |volume=37 |issue=7 |doi=10.1029/2010GL042679 |bibcode=2010GeoRL..37.7801A |issn=1944-8007}}</ref><ref>{{Cite journal |last1=Sun |first1=Mengyu |last2=Qie |first2=Xiushu |last3=Mansell |first3=Edward R. |last4=Liu |first4=Dongxia |last5=Yair |first5=Yoav |last6=Fierro |first6=Alexandre O. |last7=Yuan |first7=Shanfeng |last8=Lu |first8=Jingyu |date=2023 |title=Aerosol Impacts on Storm Electrification and Lightning Discharges Under Different Thermodynamic Environments |url=https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022JD037450 |journal=Journal of Geophysical Research: Atmospheres |language=en |volume=128 |issue=8 |pages=e2022JD037450 |doi=10.1029/2022JD037450 |bibcode=2023JGRD..12837450S |issn=2169-8996}}</ref> When lightning occurs, it generates rapid heating causing nitrogen and oxygen molecules in the atmosphere to break apart. This process leads to the formation of [[nitrogen oxide]]s (NOₓ), which can subsequently result in the production of [[ozone]], a [[greenhouse gas]] when occurring in the [[troposphere]].<ref>{{Cite web |title=Frequently Asked Questions (FAQs) – U.S. Energy Information Administration (EIA) |url=https://www.eia.gov/tools/faqs/faq.php?id=84&t=11#:~:text=Ozone%20is%20technically%20a%20greenhouse,under%20the%20Clean%20Air%20Act. |archive-url=http://web.archive.org/web/20250222124734/https://www.eia.gov/tools/faqs/faq.php?id=84&t=11 |archive-date=2025-02-22 |access-date=2025-02-25 |website=www.eia.gov}}</ref> However, lightning NOx also leads to increased amounts of [[Hydroxy group|hydroxyl]] (OH) and [[hydroperoxyl]] (HO₂) radicals. These reactive molecules initiate chemical reactions that break down greenhouse gases like [[methane]], effectively cleaning the atmosphere.<ref>{{Cite journal |last1=Brune |first1=W. H. |last2=McFarland |first2=P. J. |last3=Bruning |first3=E. |last4=Waugh |first4=S. |last5=MacGorman |first5=D. |last6=Miller |first6=D. O. |last7=Jenkins |first7=J. M. |last8=Ren |first8=X. |last9=Mao |first9=J. |last10=Peischl |first10=J. |date=2021-05-14 |title=Extreme oxidant amounts produced by lightning in storm clouds |url=https://www.science.org/doi/10.1126/science.abg0492 |journal=Science |volume=372 |issue=6543 |pages=711–715 |doi=10.1126/science.abg0492|pmid=33927054 |bibcode=2021Sci...372..711B }}</ref><ref>{{Cite journal |last1=Jenkins |first1=Jena M. |last2=Brune |first2=William H. |last3=Miller |first3=David O. |date=2021 |title=Electrical Discharges Produce Prodigious Amounts of Hydroxyl and Hydroperoxyl Radicals |url=https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021JD034557 |journal=Journal of Geophysical Research: Atmospheres |language=en |volume=126 |issue=9 |pages=e2021JD034557 |doi=10.1029/2021JD034557 |bibcode=2021JGRD..12634557J |issn=2169-8996}}</ref> === Lightning and climate change feedbacks === As lightning is influenced by climate change, there is a corresponding change to the lightning’s influence on climate. These changes can lead to further climate change, thus creating a [[Climate change feedbacks|climate change feedback]].<ref>{{Cite web |last1=Harris |first1=Nancy |last2=Munroe |first2=Thailynn |last3=Levin |first3=Kelly |date=16 September 2020 |title=6 Graphics Explain the Climate Feedback Loop Fueling US Fires |url=https://www.wri.org/insights/6-graphics-explain-climate-feedback-loop-fueling-us-fires |website=World Resources Institute}}</ref> Lightning leads to the production of [[Ground-level ozone|tropospheric ozone]] and destruction of methane, both greenhouse gases and air pollutants. Therefore, the net impact of lightning on climate depends on the balance between this warming and cooling effect of the gases' effects on atmospheric chemistry. Predictions of this feedback can vary, resulting in either no change (net zero feedback), or a warming effect (positive feedback), depending on the method used to predict lightning.<ref>{{Cite journal |last1=Finney |first1=Declan L. |last2=Doherty |first2=Ruth M. |last3=Wild |first3=Oliver |last4=Stevenson |first4=David S. |last5=MacKenzie |first5=Ian A. |last6=Blyth |first6=Alan M. |date=12 February 2018 |title=A projected decrease in lightning under climate change |url=https://www.nature.com/articles/s41558-018-0072-6 |journal=Nature Climate Change |language=en |volume=8 |issue=3 |pages=210–213 |doi=10.1038/s41558-018-0072-6 |bibcode=2018NatCC...8..210F |issn=1758-6798}}</ref> Lightning is the major natural cause of [[wildfire]],<ref>{{Cite journal |last1=Song |first1=Yang |last2=Xu |first2=Cangsu |last3=Li |first3=Xiaolu |last4=Oppong |first4=Francis |date=2 March 2024 |title=Lightning-Induced Wildfires: An Overview |journal=Fire |language=en |volume=7 |issue=3 |pages=79 |doi=10.3390/fire7030079 |doi-access=free |bibcode=2024Fire....7...79S |issn=2571-6255}}</ref> estimated to cause 10% of forest fires worldwide.<ref>{{Cite journal |last1=Malamud |first1=Bruce D. |last2=Millington |first2=James D. A. |last3=Perry |first3=George L. W. |date=2005-03-21 |title=Characterizing wildfire regimes in the United States |journal=Proceedings of the National Academy of Sciences |volume=102 |issue=13 |pages=4694–4699 |doi=10.1073/pnas.0500880102 |doi-access=free |pmid=15781868 |pmc=555719 |bibcode=2005PNAS..102.4694M |issn=0027-8424}}</ref> Wildfire can contribute to climate change.<ref>{{cite web |url=https://www.epa.gov/climate-indicators/climate-change-indicators-wildfires |title=Climate Change Indicators: Wildfires, US EPA |date=July 2016 |accessdate=July 6, 2023}}</ref> Because wildfires emit greenhouse gases, and also affect vegetation cover (which affects how much sunlight is reflected), a lightning-wildfire feedback is possible. Multiple studies suggest there could be an increase in [[Taiga|Boreal]] and Arctic lightning-ignited fires in response to climate change.<ref name=":0" /><ref name=":5">{{Cite journal |last1=Janssen |first1=Thomas A. J. |last2=Jones |first2=Matthew W. |last3=Finney |first3=Declan |last4=van der Werf |first4=Guido R. |last5=van Wees |first5=Dave |last6=Xu |first6=Wenxuan |last7=Veraverbeke |first7=Sander |date=9 November 2023 |title=Extratropical forests increasingly at risk due to lightning fires |url=https://www.nature.com/articles/s41561-023-01322-z |journal=Nature Geoscience |language=en |volume=16 |issue=12 |pages=1136–1144 |doi=10.1038/s41561-023-01322-z |bibcode=2023NatGe..16.1136J |issn=1752-0908}}</ref> There is evidence that arctic lightning wildfire feedback may also influence vegetation and [[permafrost]] cover.<ref name=":0" /><ref name=":4" /> The impact of lightning on fires in the [[tropics]] remains uncertain.<ref name=":5" />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Lightning
(section)
Add topic