Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Normal distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Sample variance ==== {{See also|Standard deviation#Estimation|Variance#Estimation}} The estimator <math style="vertical-align:0">\textstyle\hat\sigma^2</math> is called the ''[[sample variance]]'', since it is the variance of the sample (<math display=inline>(x_1, \ldots, x_n)</math>). In practice, another estimator is often used instead of the <math style="vertical-align:0">\textstyle\hat\sigma^2</math>. This other estimator is denoted <math display=inline>s^2</math>, and is also called the ''sample variance'', which represents a certain ambiguity in terminology; its square root {{tmath|s}} is called the ''sample standard deviation''. The estimator <math display=inline>s^2</math> differs from <math style="vertical-align:0">\textstyle\hat\sigma^2</math> by having {{math|(''n'' − 1)}} instead of ''n'' in the denominator (the so-called [[Bessel's correction]]): <math display=block> s^2 = \frac{n}{n-1} \hat\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2. </math> The difference between <math display=inline>s^2</math> and <math style="vertical-align:0">\textstyle\hat\sigma^2</math> becomes negligibly small for large ''n''{{'}}s. In finite samples however, the motivation behind the use of <math display=inline>s^2</math> is that it is an [[unbiased estimator]] of the underlying parameter <math display=inline>\sigma^2</math>, whereas <math style="vertical-align:0">\textstyle\hat\sigma^2</math> is biased. Also, by the Lehmann–Scheffé theorem the estimator <math display=inline>s^2</math> is uniformly minimum variance unbiased ([[UMVU]]),<ref name="Krishnamoorthy" /> which makes it the "best" estimator among all unbiased ones. However it can be shown that the biased estimator <math style="vertical-align:0">\textstyle\hat\sigma^2</math> is better than the <math display=inline>s^2</math> in terms of the [[mean squared error]] (MSE) criterion. In finite samples both <math display=inline>s^2</math> and <math style="vertical-align:0">\textstyle\hat\sigma^2</math> have scaled [[chi-squared distribution]] with {{math|(''n'' − 1)}} degrees of freedom: <math display=block> s^2 \sim \frac{\sigma^2}{n-1} \cdot \chi^2_{n-1}, \qquad \hat\sigma^2 \sim \frac{\sigma^2}{n} \cdot \chi^2_{n-1}. </math> The first of these expressions shows that the variance of <math display=inline>s^2</math> is equal to <math display=inline>2\sigma^4/(n-1)</math>, which is slightly greater than the ''σσ''-element of the inverse Fisher information matrix <math style="vertical-align:0">\textstyle\mathcal{I}^{-1}</math>, which is <math display=inline>2\sigma^4/n</math>. Thus, <math display=inline>s^2</math> is not an efficient estimator for <math display=inline>\sigma^2</math>, and moreover, since <math display=inline>s^2</math> is UMVU, we can conclude that the finite-sample efficient estimator for <math display=inline>\sigma^2</math> does not exist. Applying the asymptotic theory, both estimators <math display=inline>s^2</math> and <math style="vertical-align:0">\textstyle\hat\sigma^2</math> are consistent, that is they converge in probability to <math display=inline>\sigma^2</math> as the sample size <math display=inline>n\rightarrow\infty</math>. The two estimators are also both asymptotically normal: <math display=block> \sqrt{n}(\hat\sigma^2 - \sigma^2) \simeq \sqrt{n}(s^2-\sigma^2) \,\xrightarrow{d}\, \mathcal{N}(0,2\sigma^4). </math> In particular, both estimators are asymptotically efficient for <math display=inline>\sigma^2</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Normal distribution
(section)
Add topic