Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Kalman filter
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Discriminative Kalman filter === When the observation model <math>p(\mathbf{z}_k\mid\mathbf{x}_k)</math> is highly non-linear and/or non-Gaussian, it may prove advantageous to apply [[Bayes' rule]] and estimate :<math> p(\mathbf{z}_k\mid\mathbf{x}_k) \approx \frac{p(\mathbf{x}_k\mid\mathbf{z}_k)}{p(\mathbf{x}_k)} </math> where <math>p(\mathbf{x}_k\mid\mathbf{z}_k) \approx \mathcal{N}(g(\mathbf{z}_k),Q(\mathbf{z}_k))</math> for nonlinear functions <math>g,Q</math>. This replaces the generative specification of the standard Kalman filter with a [[discriminative model]] for the latent states given observations. Under a [[Stationary process|stationary]] state model :<math> \begin{align} p(\mathbf{x}_1) &= \mathcal{N}(0, \mathbf{T}), \\ p(\mathbf{x}_k\mid\mathbf{x}_{k-1}) &= \mathcal{N}(\mathbf{F}\mathbf{x}_{k-1}, \mathbf{C}), \end{align} </math> where <math>\mathbf{T}= \mathbf{F}\mathbf{T}\mathbf{F}^\intercal + \mathbf{C}</math>, if :<math> p(\mathbf{x}_k\mid\mathbf{z}_{1:k}) \approx \mathcal{N}(\hat{\mathbf{x}}_{k|k-1}, \mathbf{P}_{k|k-1}), </math> then given a new observation <math>\mathbf{z}_k</math>, it follows that<ref name="Bur20">{{cite journal |last1=Burkhart |first1=Michael C. |last2=Brandman |first2=David M. |last3=Franco |first3=Brian |last4=Hochberg |first4=Leigh |last5=Harrison |first5=Matthew T. |title=The Discriminative Kalman Filter for Bayesian Filtering with Nonlinear and Nongaussian Observation Models |journal=Neural Computation |date=2020 |volume=32 |issue=5 |pages=969β1017 |doi=10.1162/neco_a_01275 |pmid=32187000 |pmc=8259355 |s2cid=212748230 |access-date=26 March 2021 | url=https://direct.mit.edu/neco/article/32/5/969/95592/The-Discriminative-Kalman-Filter-for-Bayesian}}</ref> :<math> p(\mathbf{x}_{k+1}\mid\mathbf{z}_{1:k+1}) \approx \mathcal{N}(\hat{ \mathbf{x}}_{k+1|k}, \mathbf{P}_{k+1|k}) </math> where :<math> \begin{align} \mathbf{M}_{k+1} &= \mathbf{F}\mathbf{P}_{k|k-1}\mathbf{F}^\intercal + \mathbf{C}, \\ \mathbf{P}_{k+1|k} &= (\mathbf{M}_{k+1}^{-1} + Q(\mathbf{z}_k)^{-1} - \mathbf{T}^{-1})^{-1}, \\ \hat{\mathbf{x}}_{k+1|k} &= \mathbf{P}_{k+1|k} (\mathbf{M}_{k+1}^{-1}\mathbf{F}\hat{\mathbf{x}}_{k|k-1} + \mathbf{P}_{k+1|k}^{-1}g(\mathbf{z}_k) ). \end{align} </math> Note that this approximation requires <math> Q(\mathbf{z}_k)^{-1} - \mathbf{T}^{-1} </math> to be positive-definite; in the case that it is not, :<math> \mathbf{P}_{k+1|k} = (\mathbf{M}_{k+1}^{-1} + Q(\mathbf{z}_k)^{-1})^{-1} </math> is used instead. Such an approach proves particularly useful when the dimensionality of the observations is much greater than that of the latent states<ref name="Bur19">{{cite thesis |last1=Burkhart |first1=Michael C. |title=A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding |date=2019 |publisher=Brown University |location=Providence, RI, USA |doi=10.26300/nhfp-xv22 }}</ref> and can be used build filters that are particularly robust to nonstationarities in the observation model.<ref name="Bra18">{{cite journal |last1=Brandman |first1=David M. |last2=Burkhart |first2=Michael C. |last3=Kelemen |first3=Jessica |last4=Franco |first4=Brian |last5=Harrison |first5=Matthew T. |last6=Hochberg |first6=Leigh R. |title=Robust Closed-Loop Control of a Cursor in a Person with Tetraplegia using Gaussian Process Regression |journal=Neural Computation |date=2018 |volume=30 |issue=11 |pages=2986β3008 |doi=10.1162/neco_a_01129 |pmid=30216140 |pmc=6685768 |url=https://direct.mit.edu/neco/article/30/11/2986/8418/Robust-Closed-Loop-Control-of-a-Cursor-in-a-Person |access-date=26 March 2021}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Kalman filter
(section)
Add topic