Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Quaternion
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Links and monographs=== {{refbegin|30em}} * {{cite web |title=Quaternion Notices |url=https://quaternionnews.commons.gc.cuny.edu/ }} Notices and materials related to Quaternion conference presentations * {{springer|title=Quaternion|id=p/q076770}} * {{cite web |title=Frequently Asked Questions |work=Matrix and Quaternion |id=1.21 |url=http://www.j3d.org/matrix_faq/matrfaq_latest.html|ref=none}} * {{cite web |first=Doug |last=Sweetser |title=Doing Physics with Quaternions |url=http://world.std.com/~sweetser/quaternions/qindex/qindex.html |ref=none }} * [https://web.archive.org/web/20050408193941/http://www.fho-emden.de/~hoffmann/quater12012002.pdf Quaternions for Computer Graphics and Mechanics (Gernot Hoffman)] * {{cite arXiv |title=The Physical Heritage of Sir W. R. Hamilton |eprint=math-ph/0201058|last1=Gsponer|first1=Andre|last2=Hurni|first2=Jean-Pierre|year=2002|ref=none }} * {{cite web |first=D.R. |last=Wilkins |title=Hamilton's Research on Quaternions |url=http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Quaternions.html |ref=none }} * {{cite web |first=David J. |last=Grossman |title=Quaternion Julia Fractals |url=http://www.unpronounceable.com/julia/ |ref=none }} 3D Raytraced Quaternion [[Julia set|Julia Fractals]] * {{cite web |title=Quaternion Math and Conversions |url=http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/index.htm|ref=none }} Great page explaining basic math with links to straight forward rotation conversion formulae. * {{cite web |first=John H. |last=Mathews |title=Bibliography for Quaternions |url=http://math.fullerton.edu/mathews/c2003/QuaternionBib/Links/QuaternionBib_lnk_3.html|archive-url=https://web.archive.org/web/20060902200454/http://math.fullerton.edu/mathews/c2003/QuaternionBib/Links/QuaternionBib_lnk_3.html |archive-date=2006-09-02 |ref=none }} * {{cite web |title=Quaternion powers |publisher=GameDev.net |url=https://www.gamedev.net/articles/programming/math-and-physics/quaternion-powers-r1095/|ref=none }} * {{cite web |first=Andrew |last=Hanson |title=Visualizing Quaternions home page |url=http://books.elsevier.com/companions/0120884003/vq/index.html |archive-url=https://web.archive.org/web/20061105174313/http://books.elsevier.com/companions/0120884003/vq/index.html |archive-date=2006-11-05 |ref=none }} * {{cite journal |first=Charles F.F. |last=Karney |title=Quaternions in molecular modeling |journal=J. Mol. Graph. Mod. |volume=25 |issue=5 |pages=595–604 |date=January 2007 |doi=10.1016/j.jmgm.2006.04.002 |pmid=16777449 |arxiv=physics/0506177|bibcode=2007JMGM...25..595K |s2cid=6690718 |ref=none }} * {{cite arXiv |first=Johan E. |last=Mebius |title=A matrix-based proof of the quaternion representation theorem for four-dimensional rotations |year=2005 |eprint=math/0501249|ref=none }} * {{cite arXiv |first=Johan E. |last=Mebius |title=Derivation of the Euler–Rodrigues formula for three-dimensional rotations from the general formula for four-dimensional rotations |year=2007 |eprint=math/0701759|ref=none }} * {{cite web |title=Hamilton Walk |publisher=Department of Mathematics, [[NUI Maynooth]] |url=http://www.maths.nuim.ie/links/hamilton.shtml|ref=none }} * {{cite web |title=Using Quaternions to represent rotation |work=OpenGL:Tutorials |url=http://gpwiki.org/index.php/OpenGL:Tutorials:Using_Quaternions_to_represent_rotation |archive-url=https://web.archive.org/web/20071215235040/http://gpwiki.org/index.php/OpenGL:Tutorials:Using_Quaternions_to_represent_rotation |archive-date=2007-12-15 |ref=none }} * David Erickson, [[Defence Research and Development Canada]] (DRDC), Complete derivation of rotation matrix from unitary quaternion representation in DRDC TR 2005-228 paper. * {{cite web |first=Alberto |last=Martinez |title=Negative Math, How Mathematical Rules Can Be Positively Bent |publisher=Department of History, University of Texas |url=https://webspace.utexas.edu/aam829/1/m/NegativeMath.html|archive-url=https://web.archive.org/web/20110924161347/https://webspace.utexas.edu/aam829/1/m/NegativeMath.html |archive-date=2011-09-24 |ref=none }} * {{cite web |first=D. |last=Stahlke |title=Quaternions in Classical Mechanics |url=http://www.stahlke.org/dan/phys-papers/quaternion-paper.pdf|ref=none }} * {{cite arXiv |last1=Morier-Genoud |first1=Sophie |first2=Valentin |last2=Ovsienko |title=Well, Papa, can you multiply triplets? |year=2008 |class=math.AC |eprint=0810.5562|ref=none }} describes how the quaternions can be made into a skew-commutative algebra graded by {{nowrap|'''Z'''/2 × '''Z'''/2 × '''Z'''/2}}. * {{cite web |first=Helen |last=Joyce |title=Curious Quaternions |date=November 2004 |publisher=hosted by [[John Baez]] |url=http://plus.maths.org/content/os/issue32/features/baez/index|ref=none }} * {{cite web |first=Luis |last=Ibanez |title=Tutorial on Quaternions. Part I |url=http://www.itk.org/CourseWare/Training/QuaternionsI.pdf |access-date=2011-12-05 |archive-url=https://web.archive.org/web/20120204055438/http://www.itk.org/CourseWare/Training/QuaternionsI.pdf |archive-date=2012-02-04 |url-status=dead |ref=none }} [https://web.archive.org/web/20121005003247/http://www.itk.org/CourseWare/Training/QuaternionsII.pdf Part II] (PDF; using Hamilton's terminology, which differs from the modern usage) * {{cite journal |first1=R. |last1=Ghiloni |first2=V. |last2=Moretti |first3=A. |last3=Perotti |title=Continuous slice functional calculus in quaternionic Hilbert spaces |journal=Rev. Math. Phys. |volume=25 |pages=1350006–126 |year=2013 |issue=4 |doi=10.1142/S0129055X13500062 |arxiv=1207.0666|bibcode=2013RvMaP..2550006G |s2cid=119651315 |ref=none }}<br />{{cite journal |first1=R. |last1=Ghiloni |first2=V. |last2=Moretti |first3=A. |last3=Perotti |title=Spectral representations of normal operators via Intertwining Quaternionic Projection Valued Measures |journal=Rev. Math. Phys. |volume=29 |pages=1750034 |year=2017 |doi=10.1142/S0129055X17500349 |arxiv=1602.02661|s2cid=124709652 |ref=none }} two expository papers about continuous functional calculus and spectral theory in quanternionic Hilbert spaces useful in rigorous quaternionic quantum mechanics. * [https://play.google.com/store/apps/details?id=com.MoritzWillProduction.Quaternions Quaternions] the Android app shows the quaternion corresponding to the orientation of the device. * [https://www.gamedeveloper.com/programming/rotating-objects-using-quaternions Rotating Objects Using Quaternions] article speaking to the use of Quaternions for rotation in video games/computer graphics. {{refend}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Quaternion
(section)
Add topic