Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Propositional calculus
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Inference rules === Natural deduction inference rules, due ultimately to [[Gerhard Gentzen|Gentzen]], are given below.<ref name=":38" /> There are ten primitive rules of proof, which are the rule ''assumption'', plus four pairs of introduction and elimination rules for the binary connectives, and the rule ''reductio ad adbsurdum''.<ref name=":35" /> Disjunctive Syllogism can be used as an easier alternative to the proper β¨-elimination,<ref name=":35" /> and MTT and DN are commonly given rules,<ref name=":38" /> although they are not primitive.<ref name=":35" /> {| class="wikitable" style="margin:auto;" |+ List of Inference Rules |- ! Rule Name ! Alternative names ! Annotation !Assumption set ! Statement |- | Rule of Assumptions<ref name=":38" />|| Assumption<ref name=":35" />|| '''A<ref name=":38" /><ref name=":35" />''' |The current line number.<ref name=":35" />|| At any stage of the argument, introduce a proposition as an assumption of the argument.<ref name=":38" /><ref name=":35" /> |- | Conjunction introduction|| Ampersand introduction,<ref name=":38" /><ref name=":35" /> conjunction (CONJ)<ref name=":35" /><ref name=":39"/>|| '''m, n &I<ref name=":35" /><ref name=":38" />''' |The union of the assumption sets at lines '''m''' and '''n'''.<ref name=":35" />|| From <math>\varphi</math> and <math>\psi</math> at lines '''m''' and '''n''', infer <math>\varphi ~ \& ~ \psi</math>.<ref name=":38" /><ref name=":35" /> |- | Conjunction elimination|| Simplification (S),<ref name=":35" /> ampersand elimination<ref name=":38" /><ref name=":35" />|| '''m &E<ref name=":35" /><ref name=":38" />''' |The same as at line '''m'''.<ref name=":35" />|| From <math>\varphi ~ \& ~ \psi</math> at line '''m''', infer <math>\varphi</math> and <math>\psi</math>.<ref name=":35" /><ref name=":38" /> |- | Disjunction introduction<ref name=":38" />|| Addition (ADD)<ref name=":35" />|| '''m β¨I<ref name=":35" /><ref name=":38" />''' |The same as at line '''m'''.<ref name=":35" />|| From <math>\varphi</math> at line '''m''', infer <math>\varphi \lor \psi</math>, whatever <math>\psi</math> may be.<ref name=":35" /><ref name=":38" /> |- | Disjunction elimination|| Wedge elimination,<ref name=":38" /> dilemma (DL)<ref name=":39" />|| '''j,k,l,m,n β¨E<ref name=":38" />''' |The lines '''j,k,l,m,n'''.<ref name=":38" />|| From <math>\varphi \lor \psi</math> at line '''j''', and an assumption of <math>\varphi</math> at line '''k''', and a derivation of <math>\chi</math> from <math>\varphi</math> at line '''l''', and an assumption of <math>\psi</math> at line '''m''', and a derivation of <math>\chi</math> from <math>\psi</math> at line '''n''', infer <math>\chi</math>.<ref name=":38" /> |- |Disjunctive Syllogism |Wedge elimination (β¨E),<ref name=":35" /> modus tollendo ponens (MTP)<ref name=":35" /> |'''m,n DS<ref name=":35" />''' |The union of the assumption sets at lines '''m''' and '''n'''.<ref name=":35" /> |From <math>\varphi \lor \psi</math> at line '''m''' and <math>- \varphi</math> at line '''n''', infer <math>\psi</math>; from <math>\varphi \lor \psi</math> at line '''m''' and <math>- \psi</math> at line '''n''', infer <math>\varphi</math>.<ref name=":35" /> |- | Arrow elimination<ref name=":35" />|| Modus ponendo ponens (MPP),<ref name=":38" /><ref name=":35" /> modus ponens (MP),<ref name=":39" /><ref name=":35" /> conditional elimination || '''m, n βE<ref name=":35" /><ref name=":38" />''' |The union of the assumption sets at lines '''m''' and '''n'''.<ref name=":35" />|| From <math>\varphi \to \psi</math> at line '''m''', and <math>\varphi</math> at line '''n''', infer <math>\psi</math>.<ref name=":35" /> |- | Arrow introduction<ref name=":35" />|| Conditional proof (CP),<ref name=":39" /><ref name=":38" /><ref name=":35" /> conditional introduction || '''n, βI (m)<ref name=":35" /><ref name=":38" />''' |Everything in the assumption set at line '''n''', excepting '''m''', the line where the antecedent was assumed.<ref name=":35" />|| From <math>\psi</math> at line '''n''', following from the assumption of <math>\varphi</math> at line '''m''', infer <math>\varphi \to \psi</math>.<ref name=":35" /> |- | Reductio ad absurdum<ref name=":38" />|| Indirect Proof (IP),<ref name=":35" /> negation introduction (βI),<ref name=":35" /> negation elimination (βE)<ref name=":35" />|| '''m,''' '''n''' '''RAA''' '''(k)<ref name=":35" />''' |The union of the assumption sets at lines '''m''' and '''n''', excluding '''k''' (the denied assumption).<ref name=":35" />|| From a sentence and its denial{{refn|group=lower-alpha|To simplify the statement of the rule, the word "denial" here is used in this way: the ''denial'' of a formula <math>\varphi</math> that is not a ''negation'' is <math>- \varphi</math>, whereas a ''negation'', <math>- \varphi</math>, has two ''denials'', viz., <math>\varphi</math> and <math>- - \varphi</math>.<ref name=":35" />}} at lines '''m''' and '''n''', infer the denial of any assumption appearing in the proof (at line '''k''').<ref name=":35" /> |- | Double arrow introduction<ref name=":35" />|| Biconditional definition (''Df'' β),<ref name=":38" /> biconditional introduction|| '''m, n β I<ref name=":35" />''' |The union of the assumption sets at lines '''m''' and '''n'''.<ref name=":35" />|| From <math>\varphi \to \psi</math> and <math>\psi \to \varphi</math> at lines '''m''' and '''n''', infer <math>\varphi \leftrightarrow \psi</math>.<ref name=":35" /> |- | Double arrow elimination<ref name=":35" />|| Biconditional definition (''Df'' β),<ref name=":38" /> biconditional elimination|| '''m β E<ref name=":35" />''' |The same as at line '''m'''.<ref name=":35" />|| From <math>\varphi \leftrightarrow \psi</math> at line '''m''', infer either <math>\varphi \to \psi</math> or <math>\psi \to \varphi</math>.<ref name=":35" /> |- | Double negation<ref name=":38" /><ref name=":39" />|| Double negation elimination|| '''m DN<ref name=":38" />''' |The same as at line '''m'''.<ref name=":38" />|| From <math>- - \varphi</math> at line '''m''', infer <math>\varphi</math>.<ref name=":38" /> |- | Modus tollendo tollens<ref name=":38" />|| Modus tollens (MT)<ref name=":39" />|| '''m, n MTT<ref name=":38" />''' |The union of the assumption sets at lines '''m''' and '''n'''.<ref name=":38" />|| From <math>\varphi \to \psi</math> at line '''m''', and <math>- \psi</math> at line '''n''', infer <math>- \varphi</math>.<ref name=":38" /> |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Propositional calculus
(section)
Add topic