Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Kalman filter
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Update ==== Given prediction estimates <math>\hat{\mathbf{x}}_{k \mid k-1}</math> and <math>\mathbf{P}_{k \mid k-1}</math>, a new set of <math>N = 2L+1</math> sigma points <math>\mathbf{s}_0, \dots, \mathbf{s}_{2L}</math> with corresponding first-order weights <math> W_0^a,\dots W_{2L}^a</math> and second-order weights <math>W_0^c,\dots, W_{2L}^c</math> is calculated.<ref>{{cite journal |last1=Sarkka |first1=Simo |title=On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems |journal=IEEE Transactions on Automatic Control |date=September 2007 |volume=52 |issue=9 |pages=1631β1641 |doi=10.1109/TAC.2007.904453}}</ref> These sigma points are transformed through the measurement function <math>h</math>. :<math> \mathbf{z}_j=h(\mathbf{s}_j), \,\, j=0,1, \dots, 2L </math>. Then the empirical mean and covariance of the transformed points are calculated. :<math>\begin{align} \hat{\mathbf{z}} &= \sum_{j=0}^{2L} W_j^a \mathbf{z}_j \\[6pt] \hat{\mathbf{S}}_k &= \sum_{j=0}^{2L} W_j^c (\mathbf{z}_j-\hat{\mathbf{z}})(\mathbf{z}_j-\hat{\mathbf{z}})^\textsf{T} + \mathbf{R_k} \end{align}</math> where <math>\mathbf{R}_k</math> is the covariance matrix of the observation noise, <math>\mathbf{v}_k</math>. Additionally, the cross covariance matrix is also needed :<math>\begin{align} \mathbf{C_{xz}} &= \sum_{j=0}^{2L} W_j^c (\mathbf{x}_j-\hat\mathbf{x}_{k|k-1})(\mathbf{z}_j-\hat\mathbf{z})^\textsf{T}. \end{align}</math> The Kalman gain is : <math>\begin{align} \mathbf{K}_k=\mathbf{C_{xz}}\hat{\mathbf{S}}_k^{-1}. \end{align}</math> The updated mean and covariance estimates are :<math> \begin{align} \hat\mathbf{x}_{k\mid k}&=\hat\mathbf{x}_{k|k-1}+\mathbf{K}_k(\mathbf{z}_k-\hat\mathbf{z})\\ \mathbf{P}_{k\mid k}&=\mathbf{P}_{k\mid k-1}-\mathbf{K}_k\hat{\mathbf{S}}_k\mathbf{K}_k^\textsf{T}. \end{align} </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Kalman filter
(section)
Add topic