Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Hubble's law
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Measurements of the Hubble constant == {| class="wikitable sortable" style="width:100%; font-size:96%;" |- ! Date published ! Hubble constant <br /> (km/s)/Mpc ! Observer ! class="unsortable"| Citation ! class="unsortable" | Remarks / methodology <!-- Add entries in reverse chronological order (newest at the top). Do not remove older entries unless retracted by publisher. Add notes in remarks column as needed. --> |- |2025-01-14 |{{val|75.7|+8.1|-5.5}} |Pascale et al. |<ref>{{Cite journal |last1=Pascale |first1=Massimo |last2=Frye |first2=Brenda L. |last3=Pierel |first3=Justin D.R. |last4=Chen |first4=Wenlei |last5=Kelly |first5=Patrick L. |last6=Cohen |first6=Seth H. |last7=Windhorst |first7=Rogier A. |last8=Riess |first8=Adam G. |last9=Kamieneski |first9=Patrick S. |last10=Diego |first10=Jos’e M. |last11=Meena |first11=Ashish K. |last12=Cha |first12=Sangjun |last13=Oguri |first13=Masamune |last14=Zitrin |first14=Adi |last15=Jee |first15=M. James |date=2025-01-14 |title=SN H0pe: The First Measurement of H<sub>0</sub> from a Multiply Imaged Type Ia Supernova, Discovered by JWST |journal=The Astrophysical Journal |language=en |volume=979 |issue=1 |pages=13 |doi=10.3847/1538-4357/ad9928 |doi-access=free |arxiv=2403.18902 |bibcode=2025ApJ...979...13P |issn=0004-637X}}</ref> |Timing delay of gravitationally lensed images of [[SN Refsdal#Other multiply-lensed supernova|Supernova H0pe]]. Independent of cosmic distance ladder or the CMB. JWST data. (Same method as 2023-05-11 cell.) |- |2024-12-01 |{{val|72.6|2.0}} |SH0ES+CCHP JWST |<ref>{{cite journal | doi=10.3847/1538-4357/ad8c21 | doi-access=free | title=JWST Validates HST Distance Measurements: Selection of Supernova Subsample Explains Differences in JWST Estimates of Local H <sub>0</sub> | date=2024 | last1=Riess | first1=Adam G. | last2=Scolnic | first2=Dan | last3=Anand | first3=Gagandeep S. | last4=Breuval | first4=Louise | last5=Casertano | first5=Stefano | last6=Macri | first6=Lucas M. | last7=Li | first7=Siyang | last8=Yuan | first8=Wenlong | last9=Huang | first9=Caroline D. | last10=Jha | first10=Saurabh | last11=Murakami | first11=Yukei S. | last12=Beaton | first12=Rachael | last13=Brout | first13=Dillon | last14=Wu | first14=Tianrui | last15=Addison | first15=Graeme E. | last16=Bennett | first16=Charles | last17=Anderson | first17=Richard I. | last18=Filippenko | first18=Alexei V. | last19=Carr | first19=Anthony | journal=The Astrophysical Journal | volume=977 | issue=1 | page=120 | arxiv=2408.11770 | bibcode=2024ApJ...977..120R }}</ref> |JWST, 3 methods, Cepheids, TRGB, JAGB, 2 groups data |- |2023-07-19 |{{val|67.0|3.6}} |Sneppen et al. |<ref name="nature.com"/><ref name="aanda.org"/> |Due to the blackbody spectra of the optical counterpart of neutron-star mergers, these systems provide strongly constraining estimators of cosmic distance. |- |2023-07-13 |{{val|68.3|1.5}} |[[South Pole Telescope#The SPT-3G camera|SPT-3G]] |<ref>{{cite journal | last1=Balkenhol | first1=L. | last2=Dutcher | first2=D. | last3=Spurio Mancini | first3=A. | last4=Doussot | first4=A. | last5=Benabed | first5=K. | last6=Galli | first6=S. | collaboration=SPT-3G Collaboration | title=Measurement of the CMB temperature power spectrum and constraints on cosmology from the SPT-3G 2018 T T , T E , and E E dataset | journal=Physical Review D | volume=108 | issue=2 | date=2023-07-13 | page=023510 | issn=2470-0010 | doi=10.1103/PhysRevD.108.023510 | doi-access=free | arxiv=2212.05642 | bibcode=2023PhRvD.108b3510B }}</ref> |CMB TT/TE/EE power spectrum. Less than 1''σ'' discrepancy with Planck. |- |2023-05-11 |{{val|66.6|4.1|3.3}} |P. L. Kelly et al. |<ref>{{Cite journal | first1=P. L. | last1=Kelly | first2=S. | last2=Rodney | first3=T. | last3=Treu | first4=M. | last4=Oguri | first5=W. | last5=Chen | first6=A. | last6=Zitri | display-authors=etal | date=2023-05-11 | journal=[[Science (journal)|Science]] | doi=10.1126/science.abh1322 | title=Constraints on the Hubble constant from Supernova Refsdal's reappearance| volume=380 | issue=6649 | article-number=eabh1322 | pmid=37167351 | arxiv=2305.06367 | bibcode=2023Sci...380.1322K | s2cid=258615332 }}</ref> |Timing delay of gravitationally lensed images of [[SN Refsdal|Supernova Refsdal]]. Independent of cosmic distance ladder or the CMB. |- |2022-12-14 |{{val|67.3|10.0|9.1}} |S. Contarini et al. |<ref>{{Cite journal |last1=Contarini |first1=Sofia |last2=Pisani |first2=Alice |last3=Hamaus |first3=Nico |last4=Marulli |first4=Federico |last5=Moscardini |first5=Lauro |last6=Baldi |first6=Marco |date=2024 |title=The perspective of voids on rising cosmology tensions |journal=Astronomy & Astrophysics |volume=682 |article-number=A20 |doi=10.1051/0004-6361/202347572 |arxiv=2212.07438|bibcode=2024A&A...682A..20C }}</ref> |Statistics of [[cosmic voids]] using [[Sloan Digital Sky Survey|BOSS]] DR12 data set.<ref>{{Cite web |last=Chiou |first=Lyndie |date=2023-07-25 |title=How (Nearly) Nothing Might Solve Cosmology's Biggest Questions |url=https://www.quantamagazine.org/how-nearly-nothing-might-solve-cosmologys-biggest-questions-20230725/ |access-date=2023-07-31 |website=Quanta Magazine |language=en}}</ref> |- |2022-02-08 |{{val|73.4|0.99|-1.22}} |Pantheon+ |<ref>{{cite journal|last1=Brout|first1=Dillon|last2=Scolnic|first2=Dan|last3=Popovic|first3=Brodie|last4=Riess|first4=Adam G.|author4-link=Adam Riess|last5=Carr|first5=Anthony|last6=Zuntz|first6=Joe|last7=Kessler|first7=Rick|last8=Davis|first8=Tamara M.|last9=Hinton|first9=Samuel|last10=Jones|first10=David|last11=Kenworthy|first11=W. D'Arcy|last12=Peterson|first12=Erik R.|last13=Said|first13=Khaled|last14=Taylor|first14=Georgie|last15=Ali|first15=Noor|last16=Armstrong|first16=Patrick|last17=Charvu|first17=Pranav|last18=Dwomoh|first18=Arianna|last19=Meldorf|first19=Cole|last20=Palmese|first20=Antonella|last21=Qu|first21=Helen|last22=Rose|first22=Benjamin M.|last23=Sanchez|first23=Bruno|last24=Stubbs|first24=Christopher W.|last25=Vincenzi|first25=Maria|last26=Wood|first26=Charlotte M.|last27=Brown|first27=Peter J.|last28=Chen|first28=Rebecca|last29=Chambers|first29=Ken|last30=Coulter|first30=David A.|last31=Dai|first31=Mi|last32=Dimitriadis|first32=Georgios|last33=Filippenko|first33=Alexi V.|author33-link=Alex Filippenko|last34=Foley|first34=Ryan J.|last35=Jha|first35=Saurabh W.|last36=Kelsey|first36=Lisa|last37=Kirshner|first37=Robert P.|author37-link=Robert Kirshner|last38=Möller|first38=Anais|last39=Muir|first39=Jessie|last40=Nadathur|first40=Seshadri|last41=Pan|first41=Yen-Chen|last42=Rest|first42=Armin|last43=Rojas-Bravo|first43=Cesar|last44=Sako|first44=Masao|last45=Siebert|first45=Matthew R.|last46=Smith|first46=Mat|last47=Stahl|first47=Benjamin E.|last48=Wiseman|first48=Phil|date=2022-02-08|title=The Pantheon+ Analysis: Cosmological Constraints|journal=The Astrophysical Journal |volume=938 |issue=2 |page=110 |doi=10.3847/1538-4357/ac8e04 |arxiv=2202.04077|bibcode=2022ApJ...938..110B |s2cid=246679941 |doi-access=free }}</ref> |[[Cosmic distance ladder#Type Ia light curves|SN Ia distance ladder]] (+SH0ES) |- |2022-06-17 |{{val|75.4|3.8|3.7}} | T. de Jaeger et al. |<ref name="deJaeger2022">{{cite journal |display-authors=4 |first1=T. |last1=de Jaeger |first2=L. |last2=Galbany |first3=A. G. |last3=Riess |first4=Ben E. |last4=Stahl |first5=B. J. |last5=Shappee |first6=A.V. |last6=Filippenko |first7=W. |last7=Zheng |title=A 5 per cent measurement of the Hubble–Lemaître constant from Type II supernovae |journal=MNRAS |date=17 June 2022 |volume=514 |issue=3 |pages=4620–4628 |doi=10.1093/mnras/stac1661 |doi-access=free |arxiv=2203.08974}}</ref> | Use Type II supernovae as standardisable candles to obtain an independent measurement of the Hubble constant—13 SNe II with host-galaxy distances measured from Cepheid variables, the tip of the red giant branch, and geometric distance (NGC 4258). |- |2021-12-08 |{{val|73.04|1.04}} |SH0ES |<ref>{{cite journal|last1=Riess|first1=Adam G.|last2=Yuan|first2=Wenlong|last3=Macri|first3=Lucas M.|last4=Scolnic|first4=Dan|last5=Brout|first5=Dillon|last6=Casertano|first6=Stefano|last7=Jones|first7=David O.|last8=Murakami|first8=Yukei|last9=Breuval|first9=Louise|last10=Brink|first10=Thomas G.|last11=Filippenko|first11=Alexei V.|date=2021-12-08|title=A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team|journal=The Astrophysical Journal |volume=934 |issue=1 |doi=10.3847/2041-8213/ac5c5b |arxiv=2112.04510|bibcode=2022ApJ...934L...7R |s2cid=245005861 |doi-access=free }}</ref> |[[Cosmic distance ladder#Classical Cepheids|Cepheids]]-[[Cosmic distance ladder#Type Ia light curves|SN Ia distance ladder]] (HST+[[Gaia EDR3]]+"Pantheon+"). 5''σ'' discrepancy with planck. |- |2021-09-17 |{{val|69.8|1.7}} |[[Wendy Freedman|W. Freedman]] |<ref>{{Cite journal|last=Freedman|first=Wendy L.|date=2021-09-01|title=Measurements of the Hubble Constant: Tensions in Perspective*|journal=The Astrophysical Journal|volume=919|issue=1|article-number=16|doi=10.3847/1538-4357/ac0e95| arxiv=2106.15656|bibcode=2021ApJ...919...16F|s2cid=235683396|issn=0004-637X |doi-access=free }}</ref> |[[Tip of the red-giant branch]] (TRGB) distance indicator (HST+Gaia EDR3) |- |2020-12-16 |{{val|72.1|2.0}} | Hubble Space Telescope and [[Gaia EDR3]] |<ref name="Soltis2020">{{cite journal | first1=J. |last1=Soltis |first2=S. |last2=Casertano |first3=A. G. |last3=Riess |title=The Parallax of Omega Centauri Measured from Gaia EDR3 and a Direct, Geometric Calibration of the Tip of the Red Giant Branch and the Hubble Constant |journal=The Astrophysical Journal |year=2021 |volume=908 |issue=1 |article-number=L5 |doi=10.3847/2041-8213/abdbad |arxiv=2012.09196|bibcode=2021ApJ...908L...5S |s2cid=229297709 |doi-access=free }}</ref> | Combining earlier work on [[Red giant|red giant stars]], using the tip of the red-giant branch (TRGB) distance indicator, with [[parallax]] measurements of [[Omega Centauri]] from Gaia EDR3. |- |2020-12-15 |{{val|73.2|1.3}} | Hubble Space Telescope and Gaia EDR3 |<ref name="Riess2020">{{cite journal |display-authors=4 |first1=A. G. |last1=Riess |first2=S. |last2=Casertano |first3=W. |last3=Yuan |first4=J. B. |last4=Bowers |first5=L. |last5=Macri |first6=J. C. |last6=Zinn |first7=D. |last7=Scolnic |title=Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with LambdaCDM |journal=The Astrophysical Journal |year=2021 |volume=908 |issue=1 |article-number=L6 |doi=10.3847/2041-8213/abdbaf |arxiv=2012.08534|bibcode=2021ApJ...908L...6R |s2cid=229213131 |doi-access=free }}</ref> | Combination of HST [[Photometry (astronomy)|photometry]] and Gaia EDR3 parallaxes for Milky Way [[Cepheid variable|Cepheids]], reducing the uncertainty in calibration of Cepheid luminosities to 1.0%. Overall uncertainty in the value for {{math|''H''{{sub|0}}}} is 1.8%, which is expected to be reduced to 1.3% with a larger sample of type Ia supernovae in galaxies that are known Cepheid hosts. Continuation of a collaboration known as Supernovae, {{math|''H''{{sub|0}}}}, for the Equation of State of Dark Energy (SHoES). |- |2020-12-04 |{{val|73.5|5.3}} | E. J. Baxter, B. D. Sherwin |<ref name="Baxter2020">{{cite journal |first1=E. J. |last1=Baxter |first2=B. D. |last2=Sherwin |title=Determining the Hubble constant without the sound horizon scale: measurements from CMB lensing |date=February 2021 |journal=Monthly Notices of the Royal Astronomical Society |volume=501 |issue=2 |pages=1823–1835 |doi=10.1093/mnras/staa3706 |doi-access=free |arxiv=2007.04007|bibcode=2021MNRAS.501.1823B |s2cid=220404332 }}</ref> | [[Gravitational lensing]] in the [[Cosmic Microwave Background|CMB]] is used to estimate {{math|''H''{{sub|0}}}} without referring to the [[Baryon acoustic oscillations#Cosmic sound|sound horizon scale]], providing an alternative method to analyze the Planck data. |- |2020-11-25 |{{val|71.8|3.9|3.3}} | P. Denzel et al. |<ref name="Denzel2020">{{cite journal |first1=P. |last1=Denzel |first2=J. P. |last2=Coles |first3=P. |last3=Saha |first4=L. L. R. |last4=Williams |title=The Hubble constant from eight time-delay galaxy lenses |journal=Monthly Notices of the Royal Astronomical Society |volume=501 |issue=1 |date=February 2021 |pages=784–801 |doi=10.1093/mnras/staa3603 |doi-access=free |arxiv=2007.14398|bibcode=2021MNRAS.501..784D |s2cid=220845622 }}</ref> | Eight quadruply [[Gravitational lensing|lensed]] galaxy systems are used to determine {{math|''H''{{sub|0}}}} to a precision of 5%, in agreement with both "early" and "late" universe estimates. Independent of distance ladders and the cosmic microwave background. |- |2020-11-07 |{{val|67.4|1.0}} |T. Sedgwick et al. |<ref>{{Cite journal|last1=Sedgwick|first1=Thomas M|last2=Collins|first2=Chris A|last3=Baldry|first3=Ivan K|last4=James|first4=Philip A|date=2020-11-07|title=The effects of peculiar velocities in SN Ia environments on the local H0 measurement|journal=Monthly Notices of the Royal Astronomical Society|volume=500|issue=3|pages=3728–3742|doi=10.1093/mnras/staa3456|doi-access=free | arxiv=1911.03155|issn=0035-8711}}</ref> |Derived from 88 0.02 < {{mvar|z}} < 0.05 Type Ia supernovae used as standard candle distance indicators. The {{math|''H''{{sub|0}}}} estimate is corrected for the effects of peculiar velocities in the supernova environments, as estimated from the galaxy density field. The result assumes {{math|1= Ω{{sub|m}} = 0.3}}, {{math|1= Ω{{sub|Λ}} = 0.7}} and a sound horizon of {{val|149.3|u=Mpc}}, a value taken from Anderson et al. (2014).<ref>{{Cite journal|last1=Anderson|first1=Lauren|last2=Aubourg|first2=Éric|last3=Bailey|first3=Stephen|last4=Beutler|first4=Florian|last5=Bhardwaj|first5=Vaishali|last6=Blanton|first6=Michael|last7=Bolton|first7=Adam S.|last8=Brinkmann|first8=J.|last9=Brownstein|first9=Joel R.|last10=Burden|first10=Angela|last11=Chuang|first11=Chia-Hsun|date=2014-04-21|title=The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples|journal=Monthly Notices of the Royal Astronomical Society|volume=441|issue=1|pages=24–62|doi=10.1093/mnras/stu523|doi-access=free |issn=1365-2966|hdl=2445/101758|hdl-access=free}}</ref> |- |2020-09-29 |{{val|67.6|4.3|4.2}} | S. Mukherjee et al. |<ref name="Mukherjee2020">{{cite arXiv|display-authors=4 |first1=S. |last1=Mukherjee |first2=A. |last2=Ghosh |first3=M. J. |last3=Graham |first4=C. |last4=Karathanasis |first5=M. M. |last5=Kasliwal |first6=I. M. |last6=Hernandez |first7=S. M. |last7=Nissanke |first8=A. |last8=Silvestri |first9=B. D. |last9=Wandelt |title=First measurement of the Hubble parameter from bright binary black hole GW190521 |date=29 September 2020 |class=astro-ph.CO |eprint=2009.14199}}</ref> | [[Gravitational wave]]s, assuming that the transient ZTF19abanrh found by the [[Zwicky Transient Facility]] is the optical counterpart to [[GW190521]]. Independent of distance ladders and the cosmic microwave background. |- |2020-06-18 |{{val|75.8|5.2|4.9}} | T. de Jaeger et al. |<ref name="deJaeger2020">{{cite journal |display-authors=4 |first1=T. |last1=de Jaeger |first2=B. |last2=Stahl |first3=W. |last3=Zheng |first4=A.V. |last4=Filippenko |first5=A. G. |last5=Riess |first6=L. |last6=Galbany |title=A measurement of the Hubble constant from Type II supernovae |journal=MNRAS |date=18 June 2020 |volume=496 |issue=3 |pages=3402–3411 |doi=10.1093/mnras/staa1801 |doi-access=free |arxiv=2006.03412}}</ref> | Use Type II supernovae as standardisable candles to obtain an independent measurement of the Hubble constant—7 SNe II with host-galaxy distances measured from Cepheid variables or the tip of the red giant branch. |- |2020-02-26 |{{val|73.9|3.0}} | Megamaser Cosmology Project |<ref name="megamaser">{{cite journal |display-authors=4 |last1=Pesce |first1=D. W. |last2=Braatz |first2=J. A. |last3=Reid |first3=M. J. |last4=Riess |first4=A. G. |last5=Scolnic |first5=D. |last6=Condon |first6=J. J. |last7=Gao |first7=F. |last8=Henkel |first8=C. |last9=Impellizzeri |first9=C. M. V. |last10=Kuo |first10=C. Y. |last11=Lo |first11=K. Y. |title=The Megamaser Cosmology Project. XIII. Combined Hubble Constant Constraints |journal=The Astrophysical Journal |date=26 February 2020 |volume=891 |issue=1 |article-number=L1 |doi=10.3847/2041-8213/ab75f0 |arxiv=2001.09213 |bibcode=2020ApJ...891L...1P |s2cid=210920444 |doi-access=free }}</ref> | Geometric distance measurements to megamaser-hosting galaxies. Independent of distance ladders and the cosmic microwave background. |- |2019-10-14 |{{val|74.2|2.7|3.0}} | STRIDES |<ref>{{cite journal |display-authors=4 |last1=Shajib |first1=A. J. |last2=Birrer |first2=S. |last3=Treu |first3=T. |last4=Agnello |first4=A. |last5=Buckley-Geer |first5=E. J. |last6=Chan |first6=J. H. H. |last7=Christensen |first7=L. |last8=Lemon |first8=C. |last9=Lin |first9=H. |last10=Millon |first10=M. |last11=Poh |first11=J. |last12=Rusu |first12=C. E. |last13=Sluse |first13=D. |last14=Spiniello |first14=C. |last15=Chen |first15=G. C.-F. |last16=Collett |first16=T. |last17=Courbin |first17=F. |last18=Fassnacht |first18=C. D. |last19=Frieman |first19=J. |last20=Galan |first20=A. |last21=Gilman |first21=D. |last22=More |first22=A. |last23=Anguita |first23=T. |last24=Auger |first24=M. W. |last25=Bonvin |first25=V. |last26=Meylan |first26=G. |last27=Wong |first27=K. C. |last28=Abbott |first28=T. M. C. |last29=Annis |first29=J. |last30=Avila |first30=S. |last31=Bechtol |first31=K. |last32=Brooks |first32=D. |last33=Brout |first33=D. |last34=Burke |first34=D. L. |last35=Rosell |first35=A. Carnero |last36=Kind |first36=M. Carrasco |last37=Carretero |first37=J. |last38=Castander |first38=F. J. |last39=Costanzi |first39=M. |last40=da Costa |first40=L. N. |last41=De Vicente |first41=J. |last42=Desai |first42=S. |last43=Dietrich |first43=J. P. |last44=Doel |first44=P. |last45=Drlica-Wagner |first45=A. |last46=Evrard |first46=A. E. |last47=Finley |first47=D. A. |last48=Flaugher |first48=B. |last49=Fosalba |first49=P. |last50=García-Bellido |first50=J. |last51=Gerdes |first51=D. W. |last52=Gruen |first52=D. |last53=Gruendl |first53=R. A. |last54=Gschwend |first54=J. |last55=Gutierrez |first55=G. |last56=Hollowood |first56=D. L. |last57=Honscheid |first57=K. |last58=Huterer |first58=D. |last59=James |first59=D. J. |last60=Jeltema |first60=T. |last61=Krause |first61=E. |last62=Kuropatkin |first62=N. |last63=Li |first63=T. S. |last64=Lima |first64=M. |last65=MacCrann |first65=N. |last66=Maia |first66=M. A. G. |last67=Marshall |first67=J. L. |last68=Melchior |first68=P. |last69=Miquel |first69=R. |last70=Ogando |first70=R. L. C. |last71=Palmese |first71=A. |last72=Paz-Chinchón |first72=F. |last73=Plazas |first73=A. A. |last74=Romer |first74=A. K. |last75=Roodman |first75=A. |last76=Sako |first76=M. |last77=Sanchez |first77=E. |last78=Santiago |first78=B. |last79=Scarpine |first79=V. |last80=Schubnell |first80=M. |last81=Scolnic |first81=D. |last82=Serrano |first82=S. |last83=Sevilla-Noarbe |first83=I. |last84=Smith |first84=M. |last85=Soares-Santos |first85=M. |last86=Suchyta |first86=E. |last87=Tarle |first87=G. |last88=Thomas |first88=D. |last89=Walker |first89=A. R. |last90=Zhang |first90=Y. |title=STRIDES: A 3.9 per cent measurement of the Hubble constant from the strongly lensed system DES J0408-5354 |date=14 October 2019 |journal=Monthly Notices of the Royal Astronomical Society |volume=494 |issue=4 |doi=10.1093/mnras/staa828 |doi-access=free |arxiv=1910.06306 |s2cid=204509190 }}</ref> | Modelling the mass distribution & time delay of the lensed [[quasar]] DES J0408-5354. |- |2019-09-12 |{{val|76.8|2.6}} | SHARP/H0LiCOW |<ref>{{cite journal |display-authors=4 |last1=Chen |first1=G.C.-F. |last2=Fassnacht |first2=C.D. |last3=Suyu |first3=S.H.|author3-link=Sherry Suyu |last4=Rusu |first4=C.E. |last5=Chan |first5=J.H.H. |last6=Wong |first6=K.C. |last7=Auger |first7=M.W. |last8=Hilbert |first8=S. |last9=Bonvin |first9=V. |last10=Birrer |first10=S. |last11=Millon |first11=M. |last12=Koopmans |first12=L.V.E. |last13=Lagattuta |first13=D.J. |last14=McKean |first14=J.P. |last15=Vegetti |first15=S. |last16=Courbin |first16=F. |last17=Ding |first17=X. |last18=Halkola |first18=A. |last19=Jee |first19=I. |last20=Shajib |first20=A.J. |last21=Sluse |first21=D. |last22=Sonnenfeld |first22=A. |last23=Treu |first23=T. |title=A SHARP view of H0LiCOW: H0 from three time-delay gravitational lens systems with adaptive optics imaging |journal=Monthly Notices of the Royal Astronomical Society |volume=490 |issue=2 |pages=1743–1773 |date=12 September 2019 |language=en|arxiv=1907.02533|doi=10.1093/mnras/stz2547 |doi-access=free |bibcode=2019MNRAS.490.1743C |s2cid=195820422 }}</ref> | Modelling three galactically lensed objects and their lenses using ground-based adaptive optics and the Hubble Space Telescope. |- |2019-08-20 |{{val|73.3|+1.36|-1.35}} |K. Dutta et al. |<ref>{{cite journal |first1=Koushik |last1=Dutta |first2=Anirban |last2=Roy |first3=Ruchika|last3=Ruchika|first4= Anjan A. |last4=Sen |first5=M. M.|last5= Sheikh-Jabbari|title=Cosmology With Low-Redshift Observations: No Signal For New Physics|journal=Phys. Rev. D|volume=100 |issue=10 |article-number=103501 |date=20 August 2019 |language=en |arxiv=1908.07267 |doi=10.1103/PhysRevD.100.103501 |bibcode=2019PhRvD.100j3501D|s2cid=201107151 }}</ref> |This <math>H_0</math> is obtained analysing low-redshift cosmological data within ΛCDM model. The datasets used are type-Ia supernovae, [[baryon acoustic oscillations]], time-delay measurements using strong-lensing, {{math|''H''(''z'')}} measurements using cosmic chronometers and growth measurements from large scale structure observations. |- |2019-08-15 |{{val|73.5|1.4}} | M. J. Reid, D. W. Pesce, A. G. Riess |<ref>{{cite journal |first1=M. J. |last1=Reid |first2=D. W. |last2=Pesce |first3=A. G. |last3=Riess |title=An Improved Distance to NGC 4258 and its Implications for the Hubble Constant |journal=The Astrophysical Journal |volume=886 |issue=2 |article-number=L27 |date=15 August 2019 |language=en |arxiv=1908.05625 |doi=10.3847/2041-8213/ab552d |bibcode=2019ApJ...886L..27R |s2cid=199668809 |doi-access=free }}</ref> | Measuring the distance to [[Messier 106]] using its supermassive black hole, combined with measurements of eclipsing binaries in the Large Magellanic Cloud. |- |2019-07-16 |{{val|69.8|1.9}} |Hubble Space Telescope |<ref name="EA-20190716">{{cite news |author=Carnegie Institution of Science |author-link=Carnegie Institution of Science |date=16 July 2019 |title=New measurement of universe's expansion rate is 'stuck in the middle' – Red giant stars observed by Hubble Space Telescope used to make an entirely new measurement of how fast the universe is expanding |work=[[EurekAlert!]] |url=https://www.eurekalert.org/pub_releases/2019-07/cifs-nmo071619.php |access-date=16 July 2019}}</ref><ref name="SCI-20190719">{{cite journal |last=Sokol |first=Joshua |title=Debate intensifies over speed of expanding universe |url=https://www.science.org/content/article/debate-intensifies-over-speed-expanding-universe |date=19 July 2019 |journal=[[Science (journal)|Science]] |doi=10.1126/science.aay8123 |s2cid=200021863 |access-date=20 July 2019 }}</ref><ref name="The Carnegie-Chicago Hubble Program"/> |Distances to red giant stars are calculated using the tip of the red-giant branch (TRGB) distance indicator. |- |2019-07-10 |{{val|73.3|+1.7|-1.8}} |[[H0LiCOW]] collaboration |<ref name="H0LiCOW2019">{{cite journal|arxiv=1907.04869|author1=Kenneth C. Wong|title=H0LiCOW XIII. A 2.4% measurement of ''H''<sub>0</sub> from lensed quasars: 5.3''σ'' tension between early and late-Universe probes|journal=Monthly Notices of the Royal Astronomical Society|year=2020|volume=498 |issue=1 |doi=10.1093/mnras/stz3094|doi-access=free |s2cid=195886279}}</ref> |Updated observations of multiply imaged quasars, now using six quasars, independent of the cosmic distance ladder and independent of the cosmic microwave background measurements. |- |2019-07-08 |{{val|70.3|5.3|5.0}} |The [[LIGO Scientific Collaboration]] and The [[Virgo interferometer|Virgo]] Collaboration |<ref name="NAT-20190708" /> |Uses radio counterpart of GW170817, combined with earlier gravitational wave (GW) and [[electromagnetic]] (EM) data. |- |2019-03-28 |{{val|68.0|4.2|4.1}} |[[Fermi Gamma-ray Space Telescope|Fermi-LAT]] |<ref>{{cite journal|arxiv=1903.12097|first1=Alberto|last1=Domínguez|first2=Radoslaw|last2=Wojtak|display-authors=1|title=A new measurement of the Hubble constant and matter content of the Universe using extragalactic background light γ-ray attenuation|journal=The Astrophysical Journal|volume=885|issue=2|article-number=137|date=28 March 2019|bibcode=2019ApJ...885..137D|doi=10.3847/1538-4357/ab4a0e|s2cid=85543845 |doi-access=free }}</ref> |Gamma ray attenuation due to extragalactic light. Independent of the cosmic distance ladder and the cosmic microwave background. |- |- |2019-03-18 |{{val|74.03|1.42}} |Hubble Space Telescope |<ref name="Riess2019">{{cite journal|arxiv=1903.07603|first1=Adam G.|last1=Riess|first2=Stefano|last2=Casertano|first3=Wenlong|last3=Yuan|first4=Lucas M.|last4=Macri|first5=Dan|last5=Scolnic|title=Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond LambdaCDM |journal=The Astrophysical Journal|volume=876|issue=1|article-number=85|date=18 March 2019|doi=10.3847/1538-4357/ab1422|bibcode=2019ApJ...876...85R|s2cid=85528549 |doi-access=free }}</ref> |Precision HST photometry of Cepheids in the [[Large Magellanic Cloud|Large Magellanic Cloud (LMC)]] reduce the uncertainty in the distance to the LMC from 2.5% to 1.3%. The revision increases the tension with [[Cosmic microwave background|CMB]] measurements to the 4.4''σ'' level (P=99.999% for Gaussian errors), raising the discrepancy beyond a plausible level of chance. Continuation of a collaboration known as Supernovae, {{math|''H''{{sub|0}}}}, for the Equation of State of Dark Energy (SHoES). |- |2019-02-08 |{{val|67.78|0.91|0.87}} |[[Joseph Ryan (astrophysicist)|Joseph Ryan]] et al. |<ref name="Ryan2019">{{Cite journal|title=Baryon acoustic oscillation, Hubble parameter, and angular size measurement constraints on the Hubble constant, dark energy dynamics, and spatial curvature|journal=Monthly Notices of the Royal Astronomical Society|volume=488|issue=3|pages=3844–3856|first1=Joseph|last1=Ryan|first2=Yun|last2=Chen|first3=Bharat|last3=Ratra |arxiv=1902.03196|date=8 February 2019|doi=10.1093/mnras/stz1966|doi-access=free |bibcode=2019MNRAS.488.3844R|s2cid=119226802}}</ref> |Quasar angular size and baryon acoustic oscillations, assuming a flat ΛCDM model. Alternative models result in different (generally lower) values for the Hubble constant. |- |2018-11-06 |{{val|67.77|1.30}} |[[Dark Energy Survey]] |<ref name="DES">{{cite journal|arxiv=1811.02376|last1=Macaulay|first1=E|last2=Nichol|first2=R.C|display-authors=1|title=First Cosmological Results using Type Ia Supernovae from the Dark Energy Survey: Measurement of the Hubble Constant|journal=Monthly Notices of the Royal Astronomical Society|volume=486|issue=2|pages=2184–2196|collaboration=DES collaboration|year=2018|doi=10.1093/mnras/stz978|doi-access=free |s2cid=119310644}}</ref> |Supernova measurements using the ''inverse distance ladder'' method based on baryon acoustic oscillations. |- |2018-09-05 |{{val|72.5|+2.1|-2.3}} |H0LiCOW collaboration |<ref name="H0LiCOW">{{cite journal |last1=Birrer |first1=S. |last2=Treu |first2=T. |last3=Rusu |first3=C. E. |last4=Bonvin |first4=V. |last5=Fassnacht |first5=C. D. |last6=Chan |first6=J. H. H. |last7=Agnello |first7=A. |last8=Shajib |first8=A. J. |last9=Chen |first9=G. C. -F. |last10=Auger |first10=M. |last11=Courbin |first11=F. |last12=Hilbert |first12=S. |last13=Sluse |first13=D. |last14=Suyu |first14=S. H.|author14-link=Sherry Suyu |last15=Wong |first15=K. C. |display-authors=6 |year=2018 |title=H0LiCOW – IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant |journal=Monthly Notices of the Royal Astronomical Society |volume=484 |issue=4 |pages=4726–4753 |arxiv=1809.01274 |bibcode=2019MNRAS.484.4726B |doi=10.1093/mnras/stz200 |s2cid=119053798 |last16=Marshall |first16=P |last17=Lemaux |first17=B. C |last18=Meylan |first18=G|doi-access=free }}</ref> |Observations of multiply imaged quasars, independent of the cosmic distance ladder and independent of the cosmic microwave background measurements. |- |2018-07-18 |{{val|67.66|0.42}} |[[Planck (spacecraft)#2018 final data release|Planck Mission]] |<ref name="2018planckcosmos">{{cite journal |title=Planck 2018 results. VI. Cosmological parameters |bibcode=2020A&A...641A...6P |author1=Planck Collaboration |last2=Aghanim |first2=N. |journal=Astronomy and Astrophysics |author2-link=Nabila Aghanim|display-authors=etal |year=2018 |volume=641 |article-number=A6 |doi=10.1051/0004-6361/201833910 |arxiv=1807.06209 }}</ref> |Final Planck 2018 results. |- |2018-04-27 |{{val|73.52|1.62}} |Hubble Space Telescope and [[Gaia (spacecraft)|Gaia]] |<ref name="gaiariess2018">{{cite journal |display-authors=4 |last1=Riess |first1=Adam G. |last2=Casertano |first2=Stefano |last3=Yuan |first3=Wenlong |last4=Macri |first4=Lucas |last5=Bucciarelli |first5=Beatrice |last6=Lattanzi |first6=Mario G. |last7=MacKenty |first7=John W. |last8=Bowers |first8=J. Bradley |last9=Zheng |first9=WeiKang |last10=Filippenko |first10=Alexei V. |last11=Huang |first11=Caroline |last12=Anderson |first12=Richard I. |title=Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant |arxiv=1804.10655|journal=The Astrophysical Journal |date=2018 |volume=861 |issue=2 |article-number=126 |doi=10.3847/1538-4357/aac82e |language=en |issn=0004-637X|bibcode=2018ApJ...861..126R |s2cid=55643027 |doi-access=free }}</ref><ref name="guardianhubbleconstant">{{cite news|last1=Devlin|first1=Hannah|title=The answer to life, the universe and everything might be 73. Or 67|url=https://www.theguardian.com/science/2018/may/10/the-answer-to-life-the-universe-and-everything-might-be-73-or-67|access-date=13 May 2018|work=the Guardian|date=10 May 2018|language=en}}</ref> |Additional HST [[Photometry (astronomy)|photometry]] of galactic Cepheids with early Gaia parallax measurements. The revised value increases tension with CMB measurements at the 3.8''σ'' level. Continuation of the SHoES collaboration. |- |2018-02-22 |{{val|73.45|1.66}} |Hubble Space Telescope |<ref>{{Cite journal |display-authors=4 |last1=Riess |first1=Adam G. |last2=Casertano |first2=Stefano |last3=Yuan |first3=Wenlong |last4=Macri |first4=Lucas |last5=Anderson |first5=Jay |last6=MacKenty |first6=John W.|last7=Bowers |first7=J. Bradley |last8=Clubb |first8=Kelsey I. |last9=Filippenko |first9=Alexei V. |last10=Jones |first10=David O. |last11=Tucker |first11=Brad E. |title=New parallaxes of galactic Cepheids from spatially scanning the Hubble Space Telescope: Implications for the Hubble constant |journal=The Astrophysical Journal |volume=855 |issue=2 |article-number=136 |date=22 February 2018 |bibcode=2018ApJ...855..136R |arxiv=1801.01120 |doi=10.3847/1538-4357/aaadb7 |s2cid=67808349 |doi-access=free }}</ref><ref name="NASA-20180222">{{cite web |last1=Weaver |first1=Donna |last2=Villard |first2=Ray |last3=Hille |first3=Karl |title=Improved Hubble Yardstick Gives Fresh Evidence for New Physics in the Universe |url=https://www.nasa.gov/feature/goddard/2018/improved-hubble-yardstick-gives-fresh-evidence-for-new-physics-in-the-universe |date=22 February 2018 |website=[[NASA]] |access-date=24 February 2018 }}</ref> |Parallax measurements of galactic Cepheids for enhanced calibration of the [[Cosmic distance ladder|distance ladder]]; the value suggests a discrepancy with CMB measurements at the 3.7''σ'' level. The uncertainty is expected to be reduced to below 1% with the final release of the Gaia catalog. SHoES collaboration. |- |2017-10-16 |{{val|70.0|+12.0|-8.0}} |The [[LIGO Scientific Collaboration]] and The [[Virgo interferometer|Virgo]] Collaboration |<ref>{{Cite journal | last1=Foley | first1=R. J. | last2=Annis | first2=J. | last3=Tanvir | first3=N. R. T |collaboration=The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration & The MASTER Collaboration | title=A gravitational-wave standard siren measurement of the Hubble constant | journal=Nature | volume=551 | issue=7678 | date=2017-10-16 | issn=0028-0836 | doi=10.1038/nature24471 | doi-access=free | pages=85–88 | pmid=29094696 | arxiv=1710.05835 | bibcode=2017Natur.551...85A }}</ref> | [[Cosmic distance ladder#Standard siren|Standard siren]] measurement independent of normal "standard candle" techniques; the gravitational wave analysis of a binary [[neutron star]] (BNS) merger [[GW170817]] directly estimated the luminosity distance out to cosmological scales. An estimate of fifty similar detections in the next decade may arbitrate tension of other methodologies.<ref>{{cite journal |display-authors=4 |arxiv=1802.03404 |title=Prospects for resolving the Hubble constant tension with standard sirens |journal=Physical Review Letters |volume=122 |issue=6 |article-number=061105 |last1=Feeney |first1=Stephen M |last2=Peiris |first2=Hiranya V |last3=Williamson |first3=Andrew R |last4=Nissanke |first4=Samaya M |last5=Mortlock |first5=Daniel J |last6=Alsing |first6=Justin |last7=Scolnic |first7=Dan |year=2019 |bibcode=2019PhRvL.122f1105F |doi=10.1103/PhysRevLett.122.061105 |pmid=30822066 |url=https://repository.ubn.ru.nl/handle/2066/201510|hdl=2066/201510 |s2cid=73493934 }}</ref> Detection and analysis of a neutron star-black hole merger (NSBH) may provide greater precision than BNS could allow.<ref name="VitaleChen2018">{{cite journal |last1=Vitale |first1=Salvatore |last2=Chen |first2=Hsin-Yu |title=Measuring the Hubble Constant with Neutron Star Black Hole Mergers |journal=Physical Review Letters |date=12 July 2018 |volume=121 |issue=2 |article-number=021303 |doi=10.1103/PhysRevLett.121.021303 |pmid=30085719 |arxiv=1804.07337 |bibcode=2018PhRvL.121b1303V |hdl=1721.1/117110 |s2cid=51940146 }}</ref> |- |2016-11-22 |{{val|71.9|+2.4|-3.0}} |Hubble Space Telescope |<ref>{{Cite journal |first1=Vivien |last1=Bonvin |first2=Frédéric |last2=Courbin |first3=Sherry H. |last3=Suyu |author3-link=Sherry Suyu|display-authors=etal |date=2016-11-22 |title=H0LiCOW – V. New COSMOGRAIL time delays of HE 0435−1223: ''H''<sub>0</sub> to 3.8 per cent precision from strong lensing in a flat ΛCDM model |journal=[[MNRAS]] |volume=465 |issue=4 |pages=4914–4930 |doi=10.1093/mnras/stw3006 |doi-access=free |arxiv=1607.01790 |bibcode = 2017MNRAS.465.4914B |s2cid=109934944 }}</ref> | Uses time delays between multiple images of distant variable sources produced by [[strong gravitational lensing]]. Collaboration known as {{math|''H''{{sub|0}}}} Lenses in COSMOGRAIL's Wellspring (H0LiCOW). |- |2016-08-04 |{{val|76.2|+3.4|-2.7}} | Cosmicflows-3 | <ref name="Cosmicflows-3">{{cite journal |last1=Tully |first1=R. Brent |last2=Courtois |first2=Hélène M. |last3=Sorce |first3=Jenny G. |title=COSMICFLOWS-3 |journal=The Astronomical Journal |date=3 August 2016 |volume=152 |issue=2 |article-number=50 |doi=10.3847/0004-6256/152/2/50 |arxiv=1605.01765 |bibcode=2016AJ....152...50T |s2cid=250737862 |doi-access=free }}</ref> | Comparing redshift to other distance methods, including [[Tully–Fisher relation|Tully–Fisher]], Cepheid variable, and Type Ia supernovae. A restrictive estimate from the data implies a more precise value of {{val|75|2}}. |- |2016-07-13 |{{val|67.6|+0.7|-0.6}} |[[Sloan Digital Sky Survey|SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS)]] |<ref>{{Cite journal|last1=Grieb|first1=Jan N.|last2=Sánchez|first2=Ariel G.|last3=Salazar-Albornoz|first3=Salvador|date=2016-07-13|title=The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final sample |arxiv=1607.03143|doi=10.1093/mnras/stw3384|journal=Monthly Notices of the Royal Astronomical Society|volume=467|issue=2|pages=2085–2112 |doi-access=free |bibcode = 2017MNRAS.467.2085G |s2cid=55888085}}</ref> |Baryon acoustic oscillations. An extended survey (eBOSS) began in 2014 and is expected to run through 2020. The extended survey is designed to explore the time when the universe was transitioning away from the deceleration effects of gravity from 3 to 8 billion years after the Big Bang.<ref name="ebossinfo">{{cite web|title=The Extended Baryon Oscillation Spectroscopic Survey (eBOSS)|url=http://www.sdss.org/surveys/eboss/|website=SDSS|access-date=13 May 2018}}</ref> |- |2016-05-17 |{{val|73.24|1.74}} |Hubble Space Telescope |<ref>{{Cite journal|display-authors=4|last1=Riess|first1=Adam G.|last2=Macri|first2=Lucas M.|last3=Hoffmann|first3=Samantha L.|last4=Scolnic|first4=Dan|last5=Casertano|first5=Stefano|last6=Filippenko|first6=Alexei V.|last7=Tucker|first7=Brad E.|last8=Reid|first8=Mark J.|last9=Jones|first9=David O.|date=2016-04-05|title=A 2.4% Determination of the Local Value of the Hubble Constant|arxiv=1604.01424|doi=10.3847/0004-637X/826/1/56|volume=826|issue=1|journal=The Astrophysical Journal|page=56|bibcode = 2016ApJ...826...56R |s2cid=118630031 |doi-access=free }}</ref> |[[Type Ia supernova]], the uncertainty is expected to go down by a factor of more than two with upcoming Gaia measurements and other improvements. SHoES collaboration. |- | 2015-02 | {{val|67.74|0.46}} | [[Planck (spacecraft)#2015 data release|Planck Mission]] | <ref name="planckesa2015">{{cite web |url=http://www.cosmos.esa.int/web/planck/publications |title=Planck Publications: Planck 2015 Results |publisher=European Space Agency |date=February 2015 |access-date=9 February 2015}}</ref><ref name="nature20141202">{{cite news |url=http://www.nature.com/news/european-probe-shoots-down-dark-matter-claims-1.16462 |title=European probe shoots down dark-matter claims |journal=Nature |first1=Ron |last1=Cowen |first2=Davide |last2=Castelvecchi |date=2 December 2014 |access-date=6 December 2014 |doi=10.1038/nature.2014.16462}}</ref> | Results from an analysis of ''Planck''{{'}}s full mission were made public on 1 December 2014 at a conference in [[Ferrara]], Italy. A full set of papers detailing the mission results were released in February 2015. |- | 2013-10-01 | {{val|74.4|3.0}} | Cosmicflows-2 | <ref name="cosmicflows2">{{cite journal|display-authors=4|last1=Tully|first1=R. Brent|last2=Courtois|first2=Helene M.|last3=Dolphin|first3=Andrew E.|last4=Fisher|first4=J. Richard|last5=Héraudeau|first5=Philippe|last6=Jacobs|first6=Bradley A.|last7=Karachentsev|first7=Igor D.|last8=Makarov|first8=Dmitry|last9=Makarova|first9=Lidia|last10=Mitronova|first10=Sofia|last11=Rizzi|first11=Luca|last12=Shaya|first12=Edward J.|last13=Sorce|first13=Jenny G.|last14=Wu|first14=Po-Feng|title=Cosmicflows-2: The Data|journal=The Astronomical Journal|date=5 September 2013|volume=146|issue=4|article-number=86|doi=10.1088/0004-6256/146/4/86|issn=0004-6256|arxiv=1307.7213|bibcode=2013AJ....146...86T|s2cid=118494842}}</ref> | Comparing redshift to other distance methods, including Tully–Fisher, Cepheid variable, and Type Ia supernovae. |- | 2013-03-21 | {{val|67.80|0.77}} | [[Planck (spacecraft)#2013 data release|Planck Mission]] | <ref name="planck_overview">{{cite journal |last=Bucher |first=P. A. R. |author2=''et al.'' ([[Planck Collaboration]]) |date=2013 |title=Planck 2013 results. I. Overview of products and scientific Results |arxiv=1303.5062 |doi=10.1051/0004-6361/201321529 |volume=571 |journal=Astronomy & Astrophysics |page=A1 |bibcode=2014A&A...571A...1P |s2cid=218716838 }}</ref><ref name="ESA-20130321">{{cite web |date=21 March 2013 |title=Planck reveals an almost perfect universe |url=http://www.esa.int/Our_Activities/Space_Science/Planck/Planck_reveals_an_almost_perfect_Universe |publisher=[[European Space Agency|ESA]] |access-date=2013-03-21 }}</ref><ref name="NASA-20130321">{{cite web |title=Planck Mission Brings Universe Into Sharp Focus |url=http://www.jpl.nasa.gov/news/news.php?release=2013-109&rn=news.xml&rst=3739 |date=21 March 2013 |publisher=[[Jet Propulsion Laboratory|JPL]] |access-date=2013-03-21 }}</ref><ref name="NYT-20130321">{{cite news |last=Overbye |first=D. |title=An infant universe, born before we knew |url=https://www.nytimes.com/2013/03/22/science/space/planck-satellite-shows-image-of-infant-universe.html |date=21 March 2013 |work=[[New York Times]] |access-date=2013-03-21 }}</ref><ref name="NBC-20130321">{{cite web |last=Boyle |first=A. |date=21 March 2013 |title=Planck probe's cosmic 'baby picture' revises universe's vital statistics |url=http://cosmiclog.nbcnews.com/_news/2013/03/21/17397298-planck-probes-cosmic-baby-picture-revises-universes-vital-statistics |website=[[NBC News]] |access-date=2013-03-21 |archive-date=2013-03-23 |archive-url=https://web.archive.org/web/20130323235242/http://cosmiclog.nbcnews.com/_news/2013/03/21/17397298-planck-probes-cosmic-baby-picture-revises-universes-vital-statistics |url-status=dead }}</ref> | The [[European Space Agency|ESA]] Planck Surveyor was launched in May 2009. Over a four-year period, it performed a significantly more detailed investigation of cosmic microwave radiation than earlier investigations using [[High-electron-mobility transistor|HEMT]] [[radiometer]]s and [[bolometer]] technology to measure the CMB at a smaller scale than WMAP. On 21 March 2013, the European-led research team behind the Planck cosmology probe released the mission's data including a new CMB all-sky map and their determination of the Hubble constant. |- | 2012-12-20 | {{val|69.32|0.80}} | [[Wilkinson Microwave Anisotropy Probe|WMAP]] (9 years), combined with other measurements | <ref>{{cite journal |last1=Bennett |first1=C. L. |display-authors=etal |date=2013 |title=Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results |journal=[[The Astrophysical Journal Supplement Series]] |volume=208 |issue=2 |article-number=20 |arxiv=1212.5225 |bibcode=2013ApJS..208...20B |doi=10.1088/0067-0049/208/2/20 |s2cid=119271232 }}</ref> | |- | 2010 | {{val|70.4|+1.3|-1.4}} | WMAP (7 years), combined with other measurements | <ref name="wmap7parameters">{{cite journal |last1=Jarosik |first1=N. |display-authors=etal |date=2011 |title=Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Sky maps, systematic errors, and basic results |journal=[[The Astrophysical Journal Supplement Series]] |volume=192 |issue=2 |article-number=14 |arxiv=1001.4744 |bibcode=2011ApJS..192...14J |doi=10.1088/0067-0049/192/2/14 |s2cid=46171526 }}</ref> | These values arise from fitting a combination of WMAP and other cosmological data to the simplest version of the ΛCDM model. If the data are fit with more general versions, {{math|''H''{{sub|0}}}} tends to be smaller and more uncertain: typically around {{val|67|4|u=km/s|up=Mpc}} although some models allow values near {{val|63|u=km/s|up=Mpc}}.<ref>Results for {{math|''H''{{sub|0}}}} and other cosmological parameters obtained by fitting a variety of models to several combinations of WMAP and other data are available at the [[NASA]]'s [http://lambda.gsfc.nasa.gov/product/map/current/parameters.cfm LAMBDA website] {{Webarchive|url=https://web.archive.org/web/20140709010232/http://lambda.gsfc.nasa.gov/product/map/current/parameters.cfm |date=2014-07-09 }}.</ref> |- | 2010 | {{val|71.0|2.5}} | WMAP only (7 years). | <ref name="wmap7parameters"/> | |- | 2009-02 | {{val|70.5|1.3}} | WMAP (5 years), combined with other measurements | <ref name="WMAP2009">{{cite journal |last=Hinshaw |first=G. |author2=et al. (WMAP Collaboration) |year=2009 |title=Five-year Wilkinson Microwave Anisotropy Probe observations: Data processing, sky maps, and basic results |journal=[[The Astrophysical Journal Supplement]] |volume=180 |issue=2 |pages=225–245 |arxiv=0803.0732 |bibcode=2009ApJS..180..225H |doi=10.1088/0067-0049/180/2/225 |s2cid=3629998 }}</ref> | |- | 2009-02 | {{val|71.9|2.6|-2.7}} | WMAP only (5 years) | <ref name="WMAP2009"/> | |- | 2007 | {{val|70.4|1.5|-1.6}} | WMAP (3 years), combined with other measurements | <ref>{{Cite journal |last=Spergel |first=D. N. |author2=et al. (WMAP Collaboration) |year=2007 |title=Three-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for cosmology |journal=[[The Astrophysical Journal Supplement Series]] |volume=170 |issue=2 |pages=377–408 |arxiv=astro-ph/0603449 |bibcode=2007ApJS..170..377S |doi=10.1086/513700 |s2cid=1386346 }}</ref> | |- | 2006-08 | {{val|76.9|+10.7|-8.7}} | [[Chandra X-ray Observatory]] | <ref>{{cite journal |display-authors=4 |last1=Bonamente |first1=M. |last2=Joy |first2=M. K. |last3=Laroque |first3=S. J. |last4=Carlstrom |first4=J. E. |last5=Reese |first5=E. D. |last6=Dawson |first6=K. S. |date=2006 |title=Determination of the cosmic distance scale from Sunyaev–Zel'dovich effect and Chandra X-ray measurements of high-redshift galaxy clusters |journal=[[The Astrophysical Journal]] |volume=647 |issue= 1|article-number=25 |arxiv=astro-ph/0512349 |bibcode=2006ApJ...647...25B |doi=10.1086/505291 |s2cid=15723115 }}</ref> | Combined [[Sunyaev–Zeldovich effect]] and Chandra X-ray observations of [[galaxy cluster]]s. Adjusted uncertainty in table from Planck Collaboration 2013.<ref name="planck2013_parameters">{{cite journal |author1=Planck Collaboration |date=2013 |title=Planck 2013 results. XVI. Cosmological parameters |arxiv=1303.5076 |doi=10.1051/0004-6361/201321591 |volume=571 |journal=Astronomy & Astrophysics |page=A16 |bibcode=2014A&A...571A..16P|s2cid=118349591 }}</ref> |- |2003 |{{val|72|5}} |WMAP (First year) only |<ref>{{Cite journal |last=Spergel |first=D.N. |date=September 2003 |title=First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters |url=https://iopscience.iop.org/article/10.1086/377226/meta |journal=The Astrophysical Journal Supplement Series |volume=148 |issue=1 |pages=175–194|doi=10.1086/377226 |arxiv=astro-ph/0302209 |bibcode=2003ApJS..148..175S |s2cid=10794058 }}</ref> | |- | 2001-05 | {{val|72|8}} | [[Hubble Space Telescope#Key projects|Hubble Space Telescope Key Project]] | <ref name="Freedman2001">{{cite journal |last=Freedman |first=W. L. |display-authors=etal |year=2001 |title=Final results from the Hubble Space Telescope Key Project to measure the Hubble constant |journal=[[The Astrophysical Journal]] |volume=553 |issue=1 |pages=47–72 |arxiv=astro-ph/0012376 |bibcode=2001ApJ...553...47F |doi=10.1086/320638 |s2cid=119097691 }}</ref> | This project established the most precise optical determination, consistent with a measurement of {{math|''H''{{sub|0}}}} based upon Sunyaev–Zel'dovich effect observations of many galaxy clusters having a similar accuracy. |- |before 1996 | {{val|50}} — {{val|90}} (est.) | | <ref name="Overbye">{{cite book |last=Overbye |first=D. |date=1999 |chapter=Prologue |title=Lonely Hearts of the Cosmos |page=1''ff'' |edition=2nd |publisher=[[HarperCollins]] |isbn=978-0-316-64896-7 }}</ref> | |- |1994 |{{val|67|7}} |Supernova 1a Light Curve Shapes |<ref>{{Cite journal |last=Riess |first=Adam G. |date=January 1995 |title=Using SN Ia Light Curve Shapes to Measure The Hubble Constant |journal=[[The Astrophysical Journal]] |volume=438 |issue=L17|doi=10.1086/187704 |arxiv=astro-ph/9410054 |bibcode=1995ApJ...438L..17R |s2cid=118938423 }}</ref> |Determined relationship between luminosity of SN 1a's and their Light Curve Shapes. Riess et al. used this ratio of the light curve of SN 1972E and the Cepheid distance to NGC 5253 to determine the constant. |- |mid 1970's |{{val|100|10}} |[[Gérard de Vaucouleurs]] |<ref name=":0" /> |[[Gérard de Vaucouleurs|De Vaucouleurs]] believed he had improved the accuracy of Hubble's constant from Sandage's because he used 5x more primary indicators, 10× more calibration methods, 2× more secondary indicators, and 3× as many galaxy data points to derive his {{val|100|10}}. |- | early 1970s | {{val|55}} (est.) | Allan Sandage and [[Gustav Andreas Tammann|Gustav Tammann]] | <ref name="cfa"/> | |- | 1958 | {{val|75}} (est.) | [[Allan Sandage]] | <ref>{{cite journal |last=Sandage |first=A. R. |title=Current problems in the extragalactic distance scale |date=1958 |journal=[[The Astrophysical Journal]] |volume=127 |issue=3 |pages=513–526 |bibcode=1958ApJ...127..513S |doi=10.1086/146483 }}</ref> | This was the first good estimate of {{math|''H''{{sub|0}}}}, but it would be decades before a consensus was achieved. |- | 1956 | {{val|180}} | [[Milton L. Humason|Humason]], [[Nicholas Mayall|Mayall]] and Sandage |<ref name="cfa">{{cite web |url=https://www.cfa.harvard.edu/~dfabricant/huchra/hubble |title=The Hubble Constant |author=John P. Huchra |website=Harvard Center for Astrophysics |date=2008 }}</ref> | |- | 1929 | {{val|500}} | [[Edwin Hubble]], [[Hooker telescope]] |<ref>Edwin Hubble, ''A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae'', Proceedings of the National Academy of Sciences, vol. 15, no. 3, pp. 168-173, March 1929</ref><ref name="cfa"/><ref name="wwu">{{cite web |title=Hubble's Constant |url=https://www.wwu.edu/depts/skywise/hubble_constant.html |website=Skywise Unlimited – Western Washington University}}</ref> | |- | 1927 | {{val|625}} | [[Georges Lemaître]] |<ref>{{cite journal|first=Georges|last=Lemaître|title=Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques|journal=Annales de la Société Scientifique de Bruxelles|volume=A47|pages=49–59|date=1927|bibcode=1927ASSB...47...49L|language=fr}}</ref> |First measurement and interpretation as a sign of the [[expansion of the universe]]. |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Hubble's law
(section)
Add topic