Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fourier transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Spherical harmonics === Let the set of [[Homogeneous polynomial|homogeneous]] [[Harmonic function|harmonic]] [[polynomial]]s of degree {{mvar|k}} on {{math|'''R'''<sup>''n''</sup>}} be denoted by {{math|'''A'''<sub>''k''</sub>}}. The set {{math|'''A'''<sub>''k''</sub>}} consists of the [[solid spherical harmonics]] of degree {{mvar|k}}. The solid spherical harmonics play a similar role in higher dimensions to the Hermite polynomials in dimension one. Specifically, if {{math|1=''f''(''x'') = ''e''<sup>βΟ{{abs|''x''}}<sup>2</sup></sup>''P''(''x'')}} for some {{math|''P''(''x'')}} in {{math|'''A'''<sub>''k''</sub>}}, then {{math|1=''fΜ''(''ΞΎ'') = ''i''{{isup|β''k''}} ''f''(''ΞΎ'')}}. Let the set {{math|'''H'''<sub>''k''</sub>}} be the closure in {{math|''L''<sup>2</sup>('''R'''<sup>''n''</sup>)}} of linear combinations of functions of the form {{math|''f''({{abs|''x''}})''P''(''x'')}} where {{math|''P''(''x'')}} is in {{math|'''A'''<sub>''k''</sub>}}. The space {{math|''L''<sup>2</sup>('''R'''<sup>''n''</sup>)}} is then a direct sum of the spaces {{math|'''H'''<sub>''k''</sub>}} and the Fourier transform maps each space {{math|'''H'''<sub>''k''</sub>}} to itself and is possible to characterize the action of the Fourier transform on each space {{math|'''H'''<sub>''k''</sub>}}.<ref name="Stein-Weiss-1971" /> Let {{math|1=''f''(''x'') = ''f''<sub>0</sub>({{abs|''x''}})''P''(''x'')}} (with {{math|''P''(''x'')}} in {{math|'''A'''<sub>''k''</sub>}}), then <math display="block">\hat{f}(\xi)=F_0(|\xi|)P(\xi)</math> where <math display="block">F_0(r) = 2\pi i^{-k}r^{-\frac{n+2k-2}{2}} \int_0^\infty f_0(s)J_\frac{n+2k-2}{2}(2\pi rs)s^\frac{n+2k}{2}\,ds.</math> Here {{math|''J''<sub>(''n'' + 2''k'' β 2)/2</sub>}} denotes the [[Bessel function]] of the first kind with order {{math|{{sfrac|''n'' + 2''k'' β 2|2}}}}. When {{math|''k'' {{=}} 0}} this gives a useful formula for the Fourier transform of a radial function.<ref>{{harvnb|Grafakos|2004}}</ref> This is essentially the [[Hankel transform]]. Moreover, there is a simple recursion relating the cases {{math|''n'' + 2}} and {{mvar|n}}<ref>{{harvnb|Grafakos|Teschl|2013}}</ref> allowing to compute, e.g., the three-dimensional Fourier transform of a radial function from the one-dimensional one.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fourier transform
(section)
Add topic