Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Petroleum
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Climate=== [[File:Dieselrainbow.jpg|thumb|A diesel fuel spill on a road]] [[File:Carbonate system of seawater.svg|thumb|Seawater acidification]] {{As of|2018}}, about a quarter of annual global [[greenhouse gas emissions]] is the carbon dioxide from burning petroleum (plus [[methane leaks]] from the industry).<ref>{{Cite journal |last1=Ritchie |first1=Hannah |last2=Roser |first2=Max |last3=Rosado |first3=Pablo |date=May 11, 2020 |title={{CO2}} emissions by fuel |url=https://ourworldindata.org/emissions-by-fuel |url-status=live |journal=Our World in Data |archive-url=https://web.archive.org/web/20201103122924/https://ourworldindata.org/emissions-by-fuel |archive-date=November 3, 2020 |access-date=January 22, 2021}}</ref><ref>{{Cite web |title=Methane Tracker 2020 – Analysis |url=https://www.iea.org/reports/methane-tracker-2020 |url-status=live |archive-url=https://web.archive.org/web/20210119102518/https://www.iea.org/reports/methane-tracker-2020 |archive-date=January 19, 2021 |access-date=January 22, 2021 |website=IEA |date=March 30, 2020 |language=en-GB}}</ref>{{efn|12.4 gigatonnes petroleum (and about 1 Gt CO<sub>2</sub> eq from methane)/50 gigatonnes total.}} Along with the burning of coal, petroleum combustion is the largest contributor to the increase in atmospheric CO<sub>2</sub>.<ref>{{Cite journal |last1=Marland |first1=Gregg |last2=Houghton |first2=R. A. |last3=Gillett |first3=Nathan P. |last4=Conway |first4=Thomas J. |last5=Ciais |first5=Philippe |last6=Buitenhuis |first6=Erik T. |last7=Field |first7=Christopher B. |last8=Raupach |first8=Michael R. |last9=Quéré |first9=Corinne Le |date=November 20, 2007 |title=Contributions to accelerating atmospheric {{CO2}} growth from economic activity, carbon intensity, and efficiency of natural sinks |journal=Proceedings of the National Academy of Sciences |volume=104 |issue=47 |pages=18866–18870 |bibcode=2007PNAS..10418866C |doi=10.1073/pnas.0702737104 |issn=0027-8424 |pmc=2141868 |pmid=17962418 |doi-access=free}}</ref><ref>{{Cite journal |last1=Zheng |first1=Bo |last2=Zaehle |first2=Sönke |last3=Wright |first3=Rebecca |last4=Wiltshire |first4=Andrew J. |last5=Walker |first5=Anthony P. |last6=Viovy |first6=Nicolas |last7=Werf |first7=Guido R. van der |last8=Laan-Luijkx |first8=Ingrid T. van der |last9=Tubiello |first9=Francesco N. |date=December 5, 2018 |title=Global Carbon Budget 2018 |journal=Earth System Science Data |language=en |volume=10 |issue=4 |pages=2141–2194 |bibcode=2018ESSD...10.2141L |doi=10.5194/essd-10-2141-2018 |issn=1866-3508 |doi-access=free|hdl=21.11116/0000-0002-518C-5 |hdl-access=free }}</ref> Atmospheric CO<sub>2</sub> has risen over the last 150 years to current levels of over 415 [[ppmv]],<ref>{{Cite web |last=US Department of Commerce |first=NOAA |title=Global Monitoring Laboratory – Carbon Cycle Greenhouse Gases |url=https://www.esrl.noaa.gov/gmd/ccgg/trends/ |url-status=live |archive-url=https://web.archive.org/web/20070316011636/https://www.esrl.noaa.gov/gmd/ccgg/trends/ |archive-date=March 16, 2007 |access-date=May 24, 2020 |website=www.esrl.noaa.gov |language=EN-US}}</ref> from the [[Carbon dioxide in Earth's atmosphere#Concentrations in the geologic past|180–300 ppmv of the prior 800 thousand years]].<ref>[http://maps.grida.no/go/graphic/historical-trends-in-carbon-dioxide-concentrations-and-temperature-on-a-geological-and-recent-time-scale Historical trends in carbon dioxide concentrations and temperature, on a geological and recent time scale] {{webarchive|url=https://web.archive.org/web/20110724175732/http://maps.grida.no/go/graphic/historical-trends-in-carbon-dioxide-concentrations-and-temperature-on-a-geological-and-recent-time-scale |date=July 24, 2011 }}. (June 2007). In UNEP/GRID-Arendal Maps and Graphics Library. Retrieved 19:14, February 19, 2011.</ref><ref>[http://news.bbc.co.uk/1/hi/sci/tech/5314592.stm Deep ice tells long climate story] {{webarchive|url=https://web.archive.org/web/20070830193909/http://news.bbc.co.uk/1/hi/sci/tech/5314592.stm |date=August 30, 2007 }}. Retrieved 19:14, February 19, 2011.</ref><ref>{{Cite journal |last=Mitchell, John F.B. |year=1989 |title=The "Greenhouse" Effect and Climate Change |url=http://www.webpages.uidaho.edu/envs501/downloads/Mitchell |journal=Reviews of Geophysics |volume=27 |issue=1 |pages=115–139 |bibcode=1989RvGeo..27..115M |citeseerx=10.1.1.459.471 |doi=10.1029/RG027i001p00115 |archive-url=http://archive.wikiwix.com/cache/20080904222649/http://www.webpages.uidaho.edu/envs501/downloads/Mitchell |archive-date=September 4, 2008}}</ref> The rise in Arctic temperature has reduced the minimum [[Arctic ice pack]] to {{convert|4320000|km2|abbr=on|}}, a loss of almost half since satellite measurements started in 1979.<ref>{{Cite web |last=Change |first=NASA Global Climate |title=Arctic Sea Ice Minimum |url=https://climate.nasa.gov/vital-signs/arctic-sea-ice |url-status=live |archive-url=https://web.archive.org/web/20200524202942/https://climate.nasa.gov/vital-signs/arctic-sea-ice/ |archive-date=May 24, 2020 |access-date=May 24, 2020 |website=Climate Change: Vital Signs of the Planet}}</ref> [[Ocean acidification]] is the increase in the acidity of the Earth's oceans caused by the uptake of [[carbon dioxide]] ({{CO2}}) from the [[Earth's atmosphere|atmosphere]].The saturation state of calcium carbonate decreases with the uptake of carbon dioxide in the ocean.<ref>{{Cite journal |last1=Sommer |first1=Ulrich |last2=Paul |first2=Carolin |last3=Moustaka-Gouni |first3=Maria |date=May 20, 2015 |title=Warming and Ocean Acidification Effects on Phytoplankton—From Species Shifts to Size Shifts within Species in a Mesocosm Experiment |journal=PLOS ONE |language=en |volume=10 |issue=5 |pages=e0125239 |bibcode=2015PLoSO..1025239S |doi=10.1371/journal.pone.0125239 |issn=1932-6203 |pmc=4439082 |pmid=25993440 |doi-access=free}}</ref> This increase in acidity inhibits all marine life—having a greater effect on smaller organisms as well as shelled organisms (see [[scallops]]).<ref>{{Cite news |date=February 26, 2014 |title=Acidic ocean deadly for Vancouver Island scallop industry |work=cbc.ca |url=http://www.cbc.ca/news/canada/british-columbia/acidic-ocean-deadly-for-vancouver-island-scallop-industry-1.2551662 |url-status=live |archive-url=https://web.archive.org/web/20140427195837/http://www.cbc.ca/news/canada/british-columbia/acidic-ocean-deadly-for-vancouver-island-scallop-industry-1.2551662 |archive-date=April 27, 2014}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Petroleum
(section)
Add topic