Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Arithmetic function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Divisor sum convolutions === Here "convolution" does not mean "Dirichlet convolution" but instead refers to the formula for the coefficients of the [[Power series#Multiplication and division|product of two power series]]: : <math> \left(\sum_{n=0}^\infty a_n x^n\right)\left(\sum_{n=0}^\infty b_n x^n\right) = \sum_{i=0}^\infty \sum_{j=0}^\infty a_i b_j x^{i+j} = \sum_{n=0}^\infty \left(\sum_{i=0}^n a_i b_{n-i}\right) x^n = \sum_{n=0}^\infty c_n x^n .</math> The sequence <math>c_n = \sum_{i=0}^n a_i b_{n-i}</math> is called the [[convolution]] or the [[Cauchy product]] of the sequences ''a''<sub>''n''</sub> and ''b''<sub>''n''</sub>. {{br}}These formulas may be proved analytically (see [[Eisenstein series]]) or by elementary methods.<ref>Williams, ch. 13; Huard, et al. (external links).</ref> : <math> \sigma_3(n) = \frac{1}{5}\left\{6n\sigma_1(n)-\sigma_1(n) + 12\sum_{0<k<n}\sigma_1(k)\sigma_1(n-k)\right\}. </math> <ref name="Ramanujan, p. 146">Ramanujan, ''On Certain Arithmetical Functions'', Table IV; ''Papers'', p. 146</ref> : <math> \sigma_5(n) = \frac{1}{21}\left\{10(3n-1)\sigma_3(n)+\sigma_1(n) + 240\sum_{0<k<n}\sigma_1(k)\sigma_3(n-k)\right\}. </math> <ref name="Koblitz, ex. III.2.8">Koblitz, ex. III.2.8</ref> : <math> \begin{align} \sigma_7(n) &=\frac{1}{20}\left\{21(2n-1)\sigma_5(n)-\sigma_1(n) + 504\sum_{0<k<n}\sigma_1(k)\sigma_5(n-k)\right\}\\ &=\sigma_3(n) + 120\sum_{0<k<n}\sigma_3(k)\sigma_3(n-k). \end{align} </math> <ref name="Koblitz, ex. III.2.8" /><ref>Koblitz, ex. III.2.3</ref> : <math> \begin{align} \sigma_9(n) &= \frac{1}{11}\left\{10(3n-2)\sigma_7(n)+\sigma_1(n) + 480\sum_{0<k<n}\sigma_1(k)\sigma_7(n-k)\right\}\\ &= \frac{1}{11}\left\{21\sigma_5(n)-10\sigma_3(n) + 5040\sum_{0<k<n}\sigma_3(k)\sigma_5(n-k)\right\}. \end{align} </math> <ref name="Ramanujan, p. 146" /><ref>Koblitz, ex. III.2.2</ref> : <math> \tau(n) = \frac{65}{756}\sigma_{11}(n) + \frac{691}{756}\sigma_{5}(n) - \frac{691}{3}\sum_{0<k<n}\sigma_5(k)\sigma_5(n-k), </math> where ''τ''(''n'') is Ramanujan's function. <ref>Koblitz, ex. III.2.4</ref><ref>Apostol, ''Modular Functions ...'', Ex. 6.10</ref> Since ''σ''<sub>''k''</sub>(''n'') (for natural number ''k'') and ''τ''(''n'') are integers, the above formulas can be used to prove congruences<ref>Apostol, ''Modular Functions...'', Ch. 6 Ex. 10</ref> for the functions. See [[Ramanujan tau function]] for some examples. Extend the domain of the partition function by setting {{math|1=''p''(0) = 1.}} : <math> p(n)=\frac{1}{n}\sum_{1\le k\le n}\sigma(k)p(n-k). </math> <ref>G.H. Hardy, S. Ramannujan, ''Asymptotic Formulæ in Combinatory Analysis'', § 1.3; in Ramannujan, ''Papers'' p. 279</ref> This recurrence can be used to compute ''p''(''n'').
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Arithmetic function
(section)
Add topic