Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Uncertainty principle
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Heisenberg's microscope === [[File:Heisenberg gamma ray microscope.svg|thumb|200px|right|Heisenberg's gamma-ray microscope for locating an electron (shown in blue). The incoming gamma ray (shown in green) is scattered by the electron up into the microscope's aperture angle ''ΞΈ''. The scattered gamma-ray is shown in red. Classical [[optics]] shows that the electron position can be resolved only up to an uncertainty Ξ''x'' that depends on ''ΞΈ'' and the wavelength ''Ξ»'' of the incoming light.]] {{Main article|Heisenberg's microscope}} The principle is quite counter-intuitive, so the early students of quantum theory had to be reassured that naive measurements to violate it were bound always to be unworkable. One way in which Heisenberg originally illustrated the intrinsic impossibility of violating the uncertainty principle is by using the [[observer effect (physics)|observer effect]] of an imaginary microscope as a measuring device.<ref name="Heisenberg_1930"/> He imagines an experimenter trying to measure the position and momentum of an [[electron]] by shooting a [[photon]] at it.<ref name=GreensteinZajonc2006>{{cite book|first1=George |last1=Greenstein|first2=Arthur |last2=Zajonc|authorlink2=Arthur Zajonc|title=The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics|year=2006|publisher=Jones & Bartlett Learning|isbn=978-0-7637-2470-2}}</ref>{{rp|49β50}} * Problem 1 β If the photon has a short [[wavelength]], and therefore, a large momentum, the position can be measured accurately. But the photon scatters in a random direction, transferring a large and uncertain amount of momentum to the electron. If the photon has a long [[wavelength]] and low momentum, the collision does not disturb the electron's momentum very much, but the scattering will reveal its position only vaguely. * Problem 2 β If a large [[aperture]] is used for the microscope, the electron's location can be well resolved (see [[Angular resolution#The_Rayleigh_criterion|Rayleigh criterion]]); but by the principle of [[conservation of momentum]], the transverse momentum of the incoming photon affects the electron's beamline momentum and hence, the new momentum of the electron resolves poorly. If a small aperture is used, the accuracy of both resolutions is the other way around. The combination of these trade-offs implies that no matter what photon wavelength and aperture size are used, the product of the uncertainty in measured position and measured momentum is greater than or equal to a lower limit, which is (up to a small numerical factor) equal to the [[Planck constant]].<ref>{{Citation |last1=Tipler |first1=Paul A. |first2=Ralph A. |last2=Llewellyn |title=Modern Physics |volume=3 |publisher=W.H. Freeman & Co. |year=1999 |isbn=978-1572591646|lccn= 98046099 |url-access=|url=https://archive.org/details/modernphysics0003tipl |page=3 }}</ref> Heisenberg did not care to formulate the uncertainty principle as an exact limit, and preferred to use it instead, as a heuristic quantitative statement, correct up to small numerical factors, which makes the radically new noncommutativity of quantum mechanics inevitable.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Uncertainty principle
(section)
Add topic