Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Nuclear power
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Research== ===Advanced fission reactor designs=== {{Main|Generation IV reactor}} Current fission reactors in operation around the world are [[generation II reactor|second]] or [[generation III reactor|third generation]] systems, with most of the first-generation systems having been already retired. Research into advanced [[generation IV reactor]] types was officially started by the Generation IV International Forum (GIF) based on eight technology goals, including to improve economics, safety, proliferation resistance, natural resource use and the ability to consume existing nuclear waste in the production of electricity. Most of these reactors differ significantly from current operating light water reactors, and are expected to be available for commercial construction after 2030.<ref>{{cite web |url=http://ossfoundation.us/projects/energy/nuclear |title=4th Generation Nuclear Power โ OSS Foundation |publisher=Ossfoundation.us |access-date=2014-01-24 |archive-date=2014-02-01 |archive-url=https://web.archive.org/web/20140201171808/http://ossfoundation.us/projects/energy/nuclear }}</ref> === Hybrid fusion-fission === {{Main|Nuclear fusionโfission hybrid}} Hybrid nuclear power is a proposed means of generating power by the use of a combination of nuclear fusion and fission processes. The concept dates to the 1950s and was briefly advocated by [[Hans Bethe]] during the 1970s, but largely remained unexplored until a revival of interest in 2009, due to delays in the realization of pure fusion. When a sustained nuclear fusion power plant is built, it has the potential to be capable of extracting all the fission energy that remains in spent fission fuel, reducing the volume of nuclear waste by orders of magnitude, and more importantly, eliminating all actinides present in the spent fuel, substances which cause security concerns.<ref name="hybrid">{{cite journal | author = Gerstner, E. | title = Nuclear energy: The hybrid returns | year = 2009 | journal = [[Nature (journal)|Nature]] | volume = 460 | issue = 7251 | pages = 25โ28 | pmid = 19571861 | doi = 10.1038/460025a | s2cid = 205047403 | url = http://www.nature.com/news/2009/090701/pdf/460025a.pdf | doi-access = free | access-date = 2013-06-19 | archive-date = 2013-12-20 | archive-url = https://web.archive.org/web/20131220102840/http://www.nature.com/news/2009/090701/pdf/460025a.pdf | url-status = live }}</ref> === Fusion === [[File:U.S. Department of Energy - Science - 425 003 001 (9786811206).jpg|thumb|upright=1.2|Schematic of the [[ITER]] [[tokamak]] under construction in France]] {{Main|Nuclear fusion|Fusion power}} [[Fusion power|Nuclear fusion]] reactions have the potential to be safer and generate less radioactive waste than fission.<ref>{{cite book |last1=Roth |first1=J. Reece |title=Introduction to fusion energy |date=1986 |publisher=Ibis Pub |location=Charlottesville, Va. |isbn=978-0-935005-07-3}}</ref><ref name="WorldEnergyCouncil">{{cite web |last1=Hamacher |first1=T. |last2=Bradshaw |first2=A. M. |name-list-style=amp |date=October 2001 |title=Fusion as a Future Power Source: Recent Achievements and Prospects |url=http://www.worldenergy.org/wec-geis/publications/default/tech_papers/18th_Congress/downloads/ds/ds6/ds6_5.pdf |url-status=dead |archive-url=https://web.archive.org/web/20040506065141/http://www.worldenergy.org/wec-geis/publications/default/tech_papers/18th_Congress/downloads/ds/ds6/ds6_5.pdf |archive-date=2004-05-06 |access-date=2010-09-16 |publisher=World Energy Council}}</ref> These reactions appear potentially viable, though technically quite difficult and have yet to be created on a scale that could be used in a functional power plant. Fusion power has been under theoretical and experimental investigation since the 1950s. [[Nuclear fusion]] research is underway but fusion energy is not likely to be commercially widespread before 2050.<ref>{{cite news |date=27 October 2019 |title=A lightbulb moment for nuclear fusion? |language=en |work=The Guardian |url=https://www.theguardian.com/environment/2019/oct/27/nuclear-fusion-research-power-generation-iter-jet-step-carbon-neutral-2050-boris-johnson |access-date=25 November 2021}}</ref><ref>{{cite journal |last1=Entler |first1=Slavomir |last2=Horacek |first2=Jan |last3=Dlouhy |first3=Tomas |last4=Dostal |first4=Vaclav |date=1 June 2018 |title=Approximation of the economy of fusion energy |journal=Energy |language=en |volume=152 |pages=489โ497 |doi=10.1016/j.energy.2018.03.130 |s2cid=115968344 |issn=0360-5442|doi-access=free |bibcode=2018Ene...152..489E }}</ref><ref>{{cite journal |last1=Nam |first1=Hoseok |last2=Nam |first2=Hyungseok |last3=Konishi |first3=Satoshi |date=2021 |title=Techno-economic analysis of hydrogen production from the nuclear fusion-biomass hybrid system |journal=International Journal of Energy Research |language=en |volume=45 |issue=8 |pages=11992โ12012 |doi=10.1002/er.5994 |issn=1099-114X |s2cid=228937388|doi-access=free |bibcode=2021IJER...4511992N }}</ref> Several experimental nuclear fusion reactors and facilities exist. The largest and most ambitious international nuclear fusion project currently in progress is [[ITER]], a large [[tokamak]] under construction in France. ITER is planned to pave the way for commercial fusion power by demonstrating self-sustained nuclear fusion reactions with positive energy gain. Construction of the ITER facility began in 2007, but the project has run into many delays and budget overruns. The facility is now not expected to begin operations until the year 2027 โ 11 years after initially anticipated.<ref>{{cite journal |author=Gibbs |first=W. Wayt |date=2013-12-30 |title=Triple-threat method sparks hope for fusion |journal=Nature |volume=505 |issue=7481 |pages=9โ10 |bibcode=2014Natur.505....9G |doi=10.1038/505009a |pmid=24380935 |doi-access=free}}</ref> A follow on commercial nuclear fusion power station, [[DEMOnstration Power Station|DEMO]], has been proposed.<ref name="ITERorg">{{cite web |title=Beyond ITER |url=http://www.iter.org/Future-beyond.htm |archive-url=https://web.archive.org/web/20061107220145/http://www.iter.org/Future-beyond.htm |archive-date=2006-11-07 |access-date=2011-02-05 |website=The ITER Project |publisher=Information Services, Princeton Plasma Physics Laboratory}} โ Projected fusion power timeline.</ref><ref name="EFDA_Activities">{{cite web|url=http://www.efda.org/about_efda/downloads/EFDAoverview.ppt |title=Overview of EFDA Activities |website=www.efda.org |publisher=[[European Fusion Development Agreement]] |archive-url=https://web.archive.org/web/20061001123645/http://www.efda.org/about_efda/downloads/EFDAoverview.ppt |archive-date=2006-10-01 |access-date=2006-11-11 }}</ref> There are also suggestions for a power plant based upon a different fusion approach, that of an [[inertial fusion power plant]]. Fusion-powered electricity generation was initially believed to be readily achievable, as fission-electric power had been. However, the extreme requirements for continuous reactions and [[plasma containment]] led to projections being extended by several decades. In 2020, more than 80 years after [[Timeline of nuclear fusion#1930s|the first attempts]], commercialization of fusion power production was thought to be unlikely before 2050.<ref name="ITERorg" /><ref name="fusion2"/><ref name="fusiongua"/><ref name="fusion3"/><ref name="fusion4"/> To enhance and accelerate the development of fusion energy, the [[United States Department of Energy]] (DOE) granted $46 million to eight firms, including [[Commonwealth Fusion Systems]] and [[Tokamak Energy]] Inc, in 2023. This ambitious initiative aims to introduce pilot-scale fusion within a decade.<ref>{{cite press release |url=https://www.reuters.com/business/energy/us-announces-46-million-funds-eight-nuclear-fusion-companies-2023-05-31/ |title=US announces $46 million in funds to eight nuclear fusion companies |date=31 May 2023 |access-date=13 June 2023 |archive-date=9 June 2023 |archive-url=https://web.archive.org/web/20230609110155/https://www.reuters.com/business/energy/us-announces-46-million-funds-eight-nuclear-fusion-companies-2023-05-31/ |url-status=live }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Nuclear power
(section)
Add topic