Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Kalman filter
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Sigma points ==== For a [[Random variable|random]] vector <math>\mathbf{x}=(x_1, \dots, x_L)</math>, sigma points are any set of vectors :<math> \{\mathbf{s}_0,\dots, \mathbf{s}_N \}=\bigl\{\begin{pmatrix} s_{0,1}& s_{0,2}&\ldots& s_{0,L} \end{pmatrix}, \dots, \begin{pmatrix} s_{N,1}& s_{N,2}&\ldots& s_{N,L} \end{pmatrix}\bigr\}</math> attributed with * first-order weights <math>W_0^a, \dots, W_N^a</math> that fulfill # <math> \sum_{j=0}^N W_j^a=1 </math> # for all <math>i=1, \dots, L</math>: <math> E[x_i]=\sum_{j=0}^N W_j^a s_{j,i} </math> * second-order weights <math>W_0^c, \dots, W_N^c</math> that fulfill # <math> \sum_{j=0}^N W_j^c=1 </math> # for all pairs <math> (i,l) \in \{1,\dots, L\}^2: E[x_ix_l]=\sum_{j=0}^N W_j^c s_{j,i}s_{j,l} </math>. A simple choice of sigma points and weights for <math>\mathbf{x}_{k-1\mid k-1}</math> in the UKF algorithm is :<math>\begin{align} \mathbf{s}_0&=\hat \mathbf{x}_{k-1\mid k-1}\\ -1&<W_0^a=W_0^c<1\\ \mathbf{s}_j&=\hat \mathbf{x}_{k-1\mid k-1} + \sqrt{\frac{L}{1-W_0}} \mathbf{A}_j, \quad j=1, \dots, L\\ \mathbf{s}_{L+j}&=\hat \mathbf{x}_{k-1\mid k-1} - \sqrt{\frac{L}{1-W_0}} \mathbf{A}_j, \quad j=1, \dots, L\\ W_j^a&=W_j^c=\frac{1-W_0}{2L}, \quad j=1, \dots, 2L \end{align} </math> where <math>\hat \mathbf{x}_{k-1\mid k-1}</math> is the mean estimate of <math>\mathbf{x}_{k-1\mid k-1}</math>. The vector <math>\mathbf{A}_j</math> is the ''j''th column of <math>\mathbf{A}</math> where <math>\mathbf{P}_{k-1\mid k-1}=\mathbf{AA}^\textsf{T}</math>. Typically, <math>\mathbf{A}</math> is obtained via [[Cholesky decomposition]] of <math>\mathbf{P}_{k-1\mid k-1}</math>. With some care the filter equations can be expressed in such a way that <math>\mathbf{A}</math> is evaluated directly without intermediate calculations of <math>\mathbf{P}_{k-1\mid k-1}</math>. This is referred to as the ''square-root unscented Kalman filter''.<ref>{{cite book |last1=Van der Merwe |first1=R. |last2=Wan |first2=E.A. |title=2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221) |chapter=The square-root unscented Kalman filter for state and parameter-estimation |date=2001 |volume=6 |pages=3461β3464 |doi=10.1109/ICASSP.2001.940586|isbn=0-7803-7041-4 |s2cid=7290857 }}</ref> The weight of the mean value, <math>W_0</math>, can be chosen arbitrarily. Another popular parameterization (which generalizes the above) is :<math>\begin{align} \mathbf{s}_0&=\hat \mathbf{x}_{k-1\mid k-1}\\ W_0^a&= \frac{\alpha^2\kappa-L}{\alpha^2\kappa}\\ W_0^c&= W_0^a + 1-\alpha^2+\beta \\ \mathbf{s}_j&=\hat \mathbf{x}_{k-1\mid k-1} + \alpha\sqrt{\kappa} \mathbf{A}_j, \quad j=1, \dots, L\\ \mathbf{s}_{L+j}&=\hat \mathbf{x}_{k-1\mid k-1} - \alpha\sqrt{\kappa} \mathbf{A}_j, \quad j=1, \dots, L\\ W_j^a&=W_j^c=\frac{1}{2\alpha^2\kappa}, \quad j=1, \dots, 2L. \end{align} </math> <math>\alpha</math> and <math>\kappa</math> control the spread of the sigma points. <math>\beta</math> is related to the distribution of <math>x</math>. Note that this is an overparameterization in the sense that any one of <math>\alpha</math>, <math>\beta</math> and <math>\kappa</math> can be chosen arbitrarily. Appropriate values depend on the problem at hand, but a typical recommendation is <math>\alpha = 1</math>, <math>\beta = 0</math>, and <math>\kappa \approx 3L/2</math>.{{cn|date=January 2025}} If the true distribution of <math>x</math> is Gaussian, <math>\beta = 2</math> is optimal.<ref>{{Cite book |doi=10.1109/ASSPCC.2000.882463 |chapter-url=http://www.lara.unb.br/~gaborges/disciplinas/efe/papers/wan2000.pdf |chapter=The unscented Kalman filter for nonlinear estimation |title=Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373) |page=153 |year=2000 |last1=Wan |first1=E.A. |last2=Van Der Merwe |first2=R. |isbn=978-0-7803-5800-3 |citeseerx=10.1.1.361.9373 |s2cid=13992571 |access-date=2010-01-31 |archive-date=2012-03-03 |archive-url=https://web.archive.org/web/20120303020429/http://www.lara.unb.br/~gaborges/disciplinas/efe/papers/wan2000.pdf |url-status=dead }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Kalman filter
(section)
Add topic