Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Exponentiation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Computation==== The ''canonical form'' <math>x+iy</math> of <math>z^w</math> can be computed from the canonical form of {{mvar|z}} and {{mvar|w}}. Although this can be described by a single formula, it is clearer to split the computation in several steps. * ''[[Polar form]] of {{mvar|z}}''. If <math>z=a+ib</math> is the canonical form of {{mvar|z}} ({{mvar|a}} and {{mvar|b}} being real), then its polar form is <math display=block>z=\rho e^{i\theta}= \rho (\cos\theta + i \sin\theta),</math> with <math display=inline>\rho=\sqrt{a^2+b^2}</math> and <math>\theta=\operatorname{atan2}(b,a)</math>, where {{tmath|\operatorname{atan2} }} is the [[atan2|two-argument arctangent]] function. * ''[[complex logarithm|Logarithm]] of {{mvar|z}}''. The [[principal value]] of this logarithm is <math>\log z=\ln \rho+i\theta,</math> where <math>\ln</math> denotes the [[natural logarithm]]. The other values of the logarithm are obtained by adding <math>2ik\pi</math> for any integer {{mvar|k}}. * ''Canonical form of <math>w\log z.</math>'' If <math>w=c+di</math> with {{mvar|c}} and {{mvar|d}} real, the values of <math>w\log z</math> are <math display=block>w\log z = (c\ln \rho - d\theta-2dk\pi) +i (d\ln \rho + c\theta+2ck\pi),</math> the principal value corresponding to <math>k=0.</math> * ''Final result''. Using the identities <math>e^{x+y}=e^xe^y</math> and <math>e^{y\ln x} = x^y,</math> one gets <math DISPLAY=block>z^w=\rho^c e^{-d(\theta+2k\pi)} \left(\cos (d\ln \rho + c\theta+2ck\pi) +i\sin(d\ln \rho + c\theta+2ck\pi)\right),</math> with <math>k=0</math> for the principal value. =====Examples===== * <math>i^i</math> <br>The polar form of {{mvar|i}} is <math>i=e^{i\pi/2},</math> and the values of <math>\log i</math> are thus <math DISPLAY=block>\log i=i\left(\frac \pi 2 +2k\pi\right).</math> It follows that <math DISPLAY=block>i^i=e^{i\log i}=e^{-\frac \pi 2} e^{-2k\pi}.</math>So, all values of <math>i^i</math> are real, the principal one being <math DISPLAY=block> e^{-\frac \pi 2} \approx 0.2079.</math> * <math>(-2)^{3+4i}</math><br>Similarly, the polar form of {{math|β2}} is <math>-2 = 2e^{i \pi}.</math> So, the above described method gives the values <math DISPLAY=block>\begin{align} (-2)^{3 + 4i} &= 2^3 e^{-4(\pi+2k\pi)} (\cos(4\ln 2 + 3(\pi +2k\pi)) +i\sin(4\ln 2 + 3(\pi+2k\pi)))\\ &=-2^3 e^{-4(\pi+2k\pi)}(\cos(4\ln 2) +i\sin(4\ln 2)). \end{align}</math>In this case, all the values have the same argument <math>4\ln 2,</math> and different absolute values. In both examples, all values of <math>z^w</math> have the same argument. More generally, this is true if and only if the [[real part]] of {{mvar|w}} is an integer.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Exponentiation
(section)
Add topic