Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Chebyshev's inequality
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Integral Chebyshev inequality== There is a second (less well known) inequality also named after Chebyshev<ref name=Fink1984>{{cite book |last1=Fink |first1=A. M. |last2=Jodeit |first2=Max Jr. |title= Inequalities in Statistics and Probability|isbn=978-0-940600-04-1 |mr=789242 |editor1-first=Y. L. |editor1-last=Tong |editor2-last=Gupta |editor2-first=Shanti S. |year=1984 |volume=5 |series=Institute of Mathematical Statistics Lecture Notes - Monograph Series |pages=115–120 |doi=10.1214/lnms/1215465637 |chapter-url=http://projecteuclid.org/euclid.lnms/1215465617 |access-date=7 October 2012|chapter=On Chebyshev's other inequality }}</ref> If ''f'', ''g'' : [''a'', ''b''] → '''R''' are two [[monotonic]] [[function (mathematics)|function]]s of the same monotonicity, then : <math> \frac{ 1 }{ b - a } \int_a^b \! f(x) g(x) \,dx \ge \left[ \frac{ 1 }{ b - a } \int_a^b \! f(x) \,dx \right] \left[ \frac{ 1 }{ b - a } \int_a^b \! g(x) \,dx \right] .</math> If ''f'' and ''g'' are of opposite monotonicity, then the above inequality works in the reverse way. {{Math theorem|Let <math>f</math> and <math>g</math> be monotonic functions of the same monotonicity on <math>[a,b]</math>. Then for any <math>x, y \in [a,b]</math> we have <math display="block">(f(x)-f(y))(g(x)-g(y)) \geq 0.</math>|name=Lemma}} {{Math proof|Integrate this inequality with respect to <math>x</math> and <math>y</math> over <math>[a,b]</math>: <math display="block">\int_a^b \int_a^b (f(x)-f(y))(g(x)-g(y)) \,dx\,dy \geq 0.</math> Expanding the integrand gives: <math display="block">\int_a^b \int_a^b \left[f(x)g(x) - f(x)g(y) - f(y)g(x) + f(y)g(y)\right] \,dx\,dy \geq 0.</math> Separate the double integral into four parts: <math display="block">\int_a^b \int_a^b f(x)g(x) \,dx\,dy - \int_a^b \int_a^b f(x)g(y) \,dx\,dy - \int_a^b \int_a^b f(y)g(x) \,dx\,dy + \int_a^b \int_a^b f(y)g(y) \,dx\,dy \geq 0.</math> Since the integration variable in each inner integral is independent, we have: * <math>\int_a^b \int_a^b f(x)g(x) \,dx\,dy = (b-a) \int_a^b f(x)g(x) \,dx,</math> * <math>\int_a^b \int_a^b f(y)g(y) \,dx\,dy = (b-a) \int_a^b f(y)g(y) \,dy = (b-a) \int_a^b f(x)g(x) \,dx,</math> * <math>\int_a^b \int_a^b f(x)g(y) \,dx\,dy = \left(\int_a^b f(x) \,dx\right)\left(\int_a^b g(y) \,dy\right),</math> * <math>\int_a^b \int_a^b f(y)g(x) \,dx\,dy = \left(\int_a^b f(y) \,dy\right)\left(\int_a^b g(x) \,dx\right) = \left(\int_a^b f(x) \,dx\right)\left(\int_a^b g(x) \,dx\right).</math> Let <math display="block">I = \int_a^b f(x)g(x) \,dx, \quad F = \int_a^b f(x) \,dx, \quad G = \int_a^b g(x) \,dx.</math> Substitute these into the inequality: <math display="block">(b-a)I - FG - FG + (b-a)I \geq 0.</math> Simplify: <math display="block">2(b-a)I - 2FG \geq 0.</math> Dividing by <math>2(b-a)</math> (noting that <math>b-a>0</math>): <math display="block">I \geq \frac{FG}{(b-a)}.</math> Divide both sides by <math>b-a</math> to obtain: <math display="block">\frac{1}{b-a} \int_a^b f(x)g(x) \,dx \geq \left(\frac{1}{b-a}\int_a^b f(x) \,dx\right) \left(\frac{1}{b-a}\int_a^b g(x) \,dx\right).</math> This completes the proof.}} This inequality is related to [[Jensen's inequality]],<ref name=Niculescu2001>{{cite journal |last=Niculescu |first=Constantin P. |title=An extension of Chebyshev's inequality and its connection with Jensen's inequality |journal=Journal of Inequalities and Applications |year=2001 |volume=6 |issue=4 |pages=451–462 |doi=10.1155/S1025583401000273 |url=http://emis.matem.unam.mx/journals/HOA/JIA/Volume6_4/462.html |access-date=6 October 2012 |issn=1025-5834|citeseerx=10.1.1.612.7056 |doi-access=free }}</ref> [[Kantorovich's inequality]],<ref name=Niculescu2001a>{{cite journal |last1=Niculescu |first1=Constantin P. |last2=Pečarić |first2=Josip |author-link2=Josip Pečarić |title=The Equivalence of Chebyshev's Inequality to the Hermite–Hadamard Inequality |journal=Mathematical Reports |year=2010 |volume=12 |issue=62 |pages=145–156 |url=http://www.csm.ro/reviste/Mathematical_Reports/Pdfs/2010/2/Niculescu.pdf |access-date=6 October 2012 |issn=1582-3067}}</ref> the [[Hermite–Hadamard inequality]]<ref name="Niculescu2001a"/> and [[Walter's conjecture]].<ref name=Malamud2001>{{cite journal |last=Malamud |first=S. M. |title=Some complements to the Jensen and Chebyshev inequalities and a problem of W. Walter |journal=Proceedings of the American Mathematical Society |date=15 February 2001 |volume=129 |issue=9 |pages=2671–2678 |doi=10.1090/S0002-9939-01-05849-X |mr=1838791 |url=https://www.ams.org/journals/proc/2001-129-09/S0002-9939-01-05849-X/ |access-date=7 October 2012 |issn=0002-9939|doi-access=free }}</ref> ===Other inequalities=== There are also a number of other inequalities associated with Chebyshev: *[[Chebyshev's sum inequality]] *[[Chebyshev–Markov–Stieltjes inequalities]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Chebyshev's inequality
(section)
Add topic