Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Power law
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Plotting power-law distributions=== In general, power-law distributions are plotted on [[logβlog plot|doubly logarithmic axes]], which emphasizes the upper tail region. The most convenient way to do this is via the (complementary) [[cumulative distribution function#Complementary cumulative distribution function (tail distribution)|cumulative distribution]] (ccdf) that is, the [[survival function]], <math>P(x) = \mathrm{Pr}(X > x)</math>, :<math>P(x) = \Pr(X > x) = C \int_x^\infty p(X)\,\mathrm{d}X = \frac{\alpha-1}{x_\min^{-\alpha+1}} \int_x^\infty X^{-\alpha}\,\mathrm{d}X = \left(\frac{x}{x_\min} \right)^{-(\alpha-1)}.</math> The cdf is also a power-law function, but with a smaller scaling exponent. For data, an equivalent form of the cdf is the rank-frequency approach, in which we first sort the <math>n</math> observed values in ascending order, and plot them against the vector <math>\left[1,\frac{n-1}{n},\frac{n-2}{n},\dots,\frac{1}{n}\right]</math>. Although it can be convenient to log-bin the data, or otherwise smooth the probability density (mass) function directly, these methods introduce an implicit bias in the representation of the data, and thus should be avoided.{{sfn|Clauset|Shalizi|Newman|2009}}<ref>{{cite journal|title=Parameter estimation for power-law distributions by maximum likelihood methods|journal= European Physical Journal B|volume=58 |issue=2|pages=167β173|author=Bauke, H. |doi=10.1140/epjb/e2007-00219-y|year=2007|arxiv=0704.1867 |bibcode=2007EPJB...58..167B|s2cid=119602829}}</ref> The survival function, on the other hand, is more robust to (but not without) such biases in the data and preserves the linear signature on doubly logarithmic axes. Though a survival function representation is favored over that of the pdf while fitting a power law to the data with the linear least square method, it is not devoid of mathematical inaccuracy. Thus, while estimating exponents of a power law distribution, maximum likelihood estimator is recommended.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Power law
(section)
Add topic